留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR多普勒质心频移的海面流场迭代反演算法

秦艳萍 范陈清 张玉滨

秦艳萍,范陈清,张玉滨. 基于SAR多普勒质心频移的海面流场迭代反演算法[J]. 海洋学报,2022,44(3):109–117 doi: 10.12284/hyxb2022007
引用本文: 秦艳萍,范陈清,张玉滨. 基于SAR多普勒质心频移的海面流场迭代反演算法[J]. 海洋学报,2022,44(3):109–117 doi: 10.12284/hyxb2022007
Qin Yanping,Fan Chenqing,Zhang Yubin. An iterative retrieval algorithm of ocean surface current based on SAR Doppler centroid anomaly[J]. Haiyang Xuebao,2022, 44(3):109–117 doi: 10.12284/hyxb2022007
Citation: Qin Yanping,Fan Chenqing,Zhang Yubin. An iterative retrieval algorithm of ocean surface current based on SAR Doppler centroid anomaly[J]. Haiyang Xuebao,2022, 44(3):109–117 doi: 10.12284/hyxb2022007

基于SAR多普勒质心频移的海面流场迭代反演算法

doi: 10.12284/hyxb2022007
基金项目: 国家重点研发计划(2017YFC1405602);国家自然科学基金(62031005,U2006207,41906157)
详细信息
    作者简介:

    秦艳萍(1996-),女,山东省潍坊市人,主要从事海洋遥感方向研究。E-mail:qyp3822@stu.ouc.edu.cn

    通讯作者:

    张玉滨,男,讲师,主要从事海洋遥感方向研究。E-mail:zhangyb@ouc.edu.cn

  • 中图分类号: P731.21;P715.7

An iterative retrieval algorithm of ocean surface current based on SAR Doppler centroid anomaly

  • 摘要: 为了克服SAR多普勒质心频移法反演海面流场时风场贡献去除困难的难题,本文提出了基于M4S模型的弦截下山法,利用其迭代计算局部区域的海面流场;然后估算整幅SAR图像中风场对多普勒速度的风贡献因子$\gamma $;最后去除风场对多普勒速度的贡献。将该算法用于Radarsat-2数据反演海面径向流速,并利用匹配的实测数据验证反演精度。研究结果表明,本文提出的弦截下山法具有良好的收敛性和较高的收敛速度,而且对本文中使用的两景SAR数据,反演的海面径向流速偏差分别为0.04 m/s和0.15 m/s。
  • 图  1  所用Radarsat-2 SAR 数据覆盖区域

    a. 2019年6月23日;b. 2019年6月25日

    Fig.  1  Coverage area of Radarsat-2 SAR data

    a. June 23, 2019; b. June 25, 2019

    图  2  弦截下山法迭代反演流场流程

    Fig.  2  Flow chart of iterative retrieval of current field by secant downhill method

    图  3  2019年6月23日SAR图像反演结果

    a. 实测多普勒中心频率fDc;b. 预测多普勒中心频率fDp;c. 多普勒质心频率异常值fDca;d. 地距多普勒速度Vdop_sar,其中红框区域为利用弦截下山法迭代反演流场的局部区域

    Fig.  3  SAR image retrieval results on June 23, 2019

    a. Measured Doppler center frequency fDc; b. predicted Doppler center frequency fDp; c. Doppler centroid frequency anomaly fDca; d. ground Doppler velocity Vdop_sar, the red box area is the local area of the current field iteratively retrieved by the secant downhill method

    图  4  2019年6月25日SAR数据反演的地距多普勒速度Vdop_car

    Fig.  4  Ground range Doppler velocity retrieved from SAR data on June 25, 2019

    图  5  两景SAR数据对应的海表面径向流速

    a. 2019年6月23日;b. 2019年6月25日。黑色五角星处是实测数据所在位置

    Fig.  5  The radial velocity of the sea surface corresponding to the SAR data of the two scenes

    a. June 23, 2019; b. June 25, 2019. The black five-pointed star is the location of the measured data

    表  1  本文所用Radarsat-2 SAR数据信息

    Tab.  1  Radarsat-2 SAR data information used in this paper

    成像时间(UTC)幅宽/km分辨率/m入射角范围/(°)极化方式升、降轨模式
    2019年6月23日21时53分102.52×109.434.92×11.8341.45~46.70垂直极化(VV)降轨
    2019年6月25日10时11分102.91×109.935.04×11.8333.51~39.74垂直极化(VV)升轨
    下载: 导出CSV

    表  2  海流计实测海流数据

    Tab.  2  Current data measured by ocean current meters

    测量时间(UTC)位置平均流速/(m·s–1平均流向/(°)实测数据在SAR视向方向的分量/(m·s–1
    2019年6月23日21时48–58分21.30°N,118.51°E0.42336.700.23
    2019年6月25日10时6–16分21.80°N,118.29°E0.15283.90–0.14
    下载: 导出CSV
  • [1] 刘巍, 张韧, 王辉赞, 等. 基于卫星遥感资料的海洋表层流场反演与估算[J]. 地球物理学进展, 2012, 27(5): 1989−1994. doi: 10.6038/j.issn.1004-2903.2012.05.020

    Liu Wei, Zhang Ren, Wang Huizan, et al. Sea surface flow field retrieval and estimation based on satellite remote sensing data[J]. Progress in Geophysics, 2012, 27(5): 1989−1994. doi: 10.6038/j.issn.1004-2903.2012.05.020
    [2] 蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5): 1185−1198.

    Jiang Xingwei, Lin Mingsen, Zhang Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5): 1185−1198.
    [3] Emery W J, Fowler C, Clayson C A. Satellite-image-derived Gulf Stream currents compared with numerical model results[J]. Journal of Atmospheric and Oceanic Technology, 1992, 9(3): 286−304. doi: 10.1175/1520-0426(1992)009<0286:SIDGSC>2.0.CO;2
    [4] 毛志华, 潘德炉, 潘玉球, 等. 利用卫星遥感SST估算海表流场[J]. 海洋通报, 1996, 15(1): 84−90.

    Mao Zhihua, Pan Delu, Pan Yuqiu, et al. Methods of obtaining sea surface velocities field from SST images[J]. Marine Science Bulletin, 1996, 15(1): 84−90.
    [5] Emery W J, Baldwin D G, Matthews D K. Sampling the mesoscale ocean surface currents with various satellite altimeter configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 795−803. doi: 10.1109/TGRS.2003.820599
    [6] 吴雄斌, 杨绍麟, 程丰, 等. 高频地波雷达东海海洋表面矢量流探测试验[J]. 地球物理学报, 2003, 46(3): 340−346. doi: 10.3321/j.issn:0001-5733.2003.03.010

    Wu Xiongbin, Yang Shaolin, Cheng Feng, et al. Ocean surface currents detection at the eastern China sea by HF surface wave radar[J]. Chinese Journal of Geophysics, 2003, 46(3): 340−346. doi: 10.3321/j.issn:0001-5733.2003.03.010
    [7] 杨春奇. 高频地波雷达海洋回波提取及海态参数反演方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Yang Chunqi. Research on wave echo extraction and high frequency ground wave radar sea-state parameters inversion method[D]. Harbin: Harbin Institute of Technology, 2019.
    [8] Bao Qingliu, Dong Xiaolong, Zhu Di, et al. The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3441−3451. doi: 10.1109/JSTARS.2015.2414451
    [9] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505−6516. doi: 10.1109/TGRS.2017.2728824
    [10] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576. doi: 10.3390/rs10040576
    [11] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Ka-band Doppler scatterometry over a loop current eddy[J]. Remote Sensing, 2020, 12(15): 2388. doi: 10.3390/rs12152388
    [12] 候富城, 孟俊敏, 张晰, 等. 利用多普勒频移反演ASAR海表面流速[J]. 海洋科学进展, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011

    Hou Fucheng, Meng Junmin, Zhang Xi, et al. Using the Doppler shift method to retrieve the ASAR sea surface velocity[J]. Advances in Marine Science, 2019, 37(2): 274−283. doi: 10.3969/j.issn.1671-6647.2019.02.011
    [13] 何宜军, 杨小波, 矣娜, 等. 星载SAR测量海洋流场研究进展[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 181−190.

    He Yijun, Yang Xiaobo, Yi Na, et al. Progress in sea surface current retrieval from spaceborne SAR measurements[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020, 12(2): 181−190.
    [14] Liu Bochang, He Yijun, Li Xiuzhong. A new concept of full ocean current vector retrieval with spaceborne SAR based on intrapulse beam-switching technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7682−7704. doi: 10.1109/TGRS.2020.2983178
    [15] Johannessen J A, Chapron B, Collard F, et al. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations[J]. Geophysical Research Letters, 2008, 35(22): L22608. doi: 10.1029/2008GL035709
    [16] Wang Lihua, Zhou Yunxuan, Ge Jianzhong, et al. Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar[J]. Acta Oceanologica Sinica, 2014, 33(11): 141−149. doi: 10.1007/s13131-014-0563-x
    [17] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface currents[J]. Nature, 1987, 328(6132): 707−709. doi: 10.1038/328707a0
    [18] Kim J E, Kim D J, Moon W M. Enhancement of Doppler centroid for ocean surface current retrieval from ERS-1/2 raw SAR[C]// IEEE International Geoscience & Remote Sensing Symposium. Washington DC: IEEE, 2004, 5(20–24): 3118–3120.
    [19] Collard F, Mouche A, Chapron B, et al. Routine high resolution observation of selected major surface currents from space[C]//Proceedings of the SeaSAR 2008. Noordwijk, Netherlands: ESA Communication Production Office, 2008, SP-656.
    [20] Moiseev A, Johnsen H, Hansen M W, et al. Evaluation of radial ocean surface currents derived from Sentinel-1 IW Doppler shift using coastal radar and Lagrangian surface drifter observations[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015743.
    [21] Chapron B, Collard F, Kerbaol V. Satellite synthetic aperture radar sea surface Doppler measurements[C]//Proceeding of the 2nd Workshop on Coastal and Marine Applications of SAR. Noordwijk, Netherlands: ESA Special Publication, 2004, 565: 133–139.
    [22] Romeiser R, Runge H, Suchandt S, et al. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2759−2772. doi: 10.1109/TGRS.2013.2265659
    [23] Chapron B, Collard F, Ardhuin F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008.
    [24] 杨小波. 基于ASAR的时变海表面流场反演研究[D]. 上海: 上海海洋大学, 2016.

    Yang Xiaobo. Sea surface current retrieval based on ASAR data[D]. Shanghai: Shanghai Ocean University, 2016.
    [25] Romeiser R, Alpers W, Wismann V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25237−25250. doi: 10.1029/97JC00190
    [26] Cumming I G, Wong F H. 合成孔径雷达成像: 算法与实现[M]. 洪文, 胡东辉, 译. 北京: 电子工业出版社, 2012.

    Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Hongwen, Hu Donghui, trans. Beijing: Publishing House of Electronics Industry, 2012.
    [27] 任圣君, 陈少昌. 基于相位增量法的合成孔径雷达多普勒中心频率估计[J]. 微型机与应用, 2017, 36(21): 81−84,89.

    Ren Shengjun, Chen Shaochang. Doppler center frequency estimation of synthetic aperture radar based on phase increment method[J]. Microcomputer & its Applications, 2017, 36(21): 81−84,89.
    [28] 王绍清. 星载SAR多普勒中心实时估计技术研究[D]. 北京: 中国科学院电子学研究所, 2005.

    Wang Shaoqing. Research on the Doppler centroid real-time estimation technology of space-borne SAR[D]. Beijing: Institute of Electrics, Chinese Academy of Sciences, 2005.
    [29] Raney R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing, 1986, 7(9): 1153−1162. doi: 10.1080/01431168608948916
    [30] Hansen M W, Collard F, Dagestad K F, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3582−3592. doi: 10.1109/TGRS.2011.2153864
    [31] 李庆扬, 王能超, 易大义. 数值分析[M]. 4版. 武汉: 华中科技大学出版社, 2006: 222-230.

    Li Qingyang, Wang Nengchao, Yi Dayi. Numerical Analysis[M]. 4th ed. Wuhan: Huazhong University of Science & Technology Press, 2006: 222−230.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  219
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-11-01
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回