留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海岛局部风场特性的风洞试验和数值模拟研究

郭健 胡成杰

郭健,胡成杰. 海岛局部风场特性的风洞试验和数值模拟研究[J]. 海洋学报,2022,44(3):98–108 doi: 10.12284/hyxb2022005
引用本文: 郭健,胡成杰. 海岛局部风场特性的风洞试验和数值模拟研究[J]. 海洋学报,2022,44(3):98–108 doi: 10.12284/hyxb2022005
Guo Jian,Hu Chengjie. Wind tunnel test and numerical simulation of partial wind field characteristics of islands[J]. Haiyang Xuebao,2022, 44(3):98–108 doi: 10.12284/hyxb2022005
Citation: Guo Jian,Hu Chengjie. Wind tunnel test and numerical simulation of partial wind field characteristics of islands[J]. Haiyang Xuebao,2022, 44(3):98–108 doi: 10.12284/hyxb2022005

海岛局部风场特性的风洞试验和数值模拟研究

doi: 10.12284/hyxb2022005
基金项目: 国家自然科学基金(52078461,U1709207,51578506);浙江省重点研发项目(2019C03098)。
详细信息
    作者简介:

    郭健(1973—),男,浙江省杭州市人,博士,教授,主要从事跨海工程智能监控及安全防护研究。E-mail:guoj@zjut.edu.cn

  • 中图分类号: TU312.1

Wind tunnel test and numerical simulation of partial wind field characteristics of islands

  • 摘要: 针对海岛局部风效应突出的问题,采用边界层风洞试验与数值模拟相结合的方法,对3种坡度的理想化海岛地形的风剖面进行了数值拟合,定义了差异系数来描述风剖面变化,利用数值模拟研究了差异系数和最大加速比在迎风侧的分布,重点探讨了海岛坡度和高度对最大加速比和差异系数的影响;基于风洞数据,对迎风侧和背风侧顺风向、横风向和竖向湍流强度和阵风因子分布进行了研究。结果表明:数值模拟与风洞试验结果较接近,风剖面指数在迎风侧较小;靠近坡顶的加速效应尤为明显,其最大加速比为0.4~1.0;坡腰处的差异系数较小,随着岛脊线角度的增加,差异系数为0的位置有向坡脚靠近的趋势;坡度增大到25°、0°岛脊线上最大加速比和差异系数均较大;迎风侧的三向湍流强度分布较规律,而背风侧的三向湍流强度分布较杂乱,尤其是在距海岛表面100 m高度范围内;阵风因子和湍流强度的变化趋势具有较高的一致性。
  • 图  1  宁波–舟山港的六横岛海域

    Fig.  1  Sea area of Liuheng Island in Ningbo-Zhoushan Port

    图  2  风洞试验示意

    Fig.  2  Schematic diagram of wind tunnel test

    图  3  风洞试验布置

    Fig.  3  Layout of wind tunnel test

    图  4  边界层平均风剖面及湍流度剖面

    Fig.  4  Mean wind and turbulence profiles of boundary layer

    图  5  计算域及网格划分示意图

    Fig.  5  Schematic diagram of computing domain and grid

    图  6  风剖面自保持性验证

    Fig.  6  Verification of wind profile self preservation

    图  7  水平向风速示意图

    Fig.  7  Schematic diagram of horizontal wind speed

    图  8  不同坡度海岛风洞试验平均风速分布

    Fig.  8  Average wind speed distribution of wind tunnel test on islands with different slopes

    图  9  不同坡度海岛风洞试验与数值模拟平均风速对比

    Fig.  9  Comparison of mean wind speed between wind tunnel test and numerical simulation on islands with different slopes

    图  10  典型位置风剖面指数(α

    Fig.  10  Wind profile index at typical location (α)

    图  11  岛脊线与定位点布置

    Fig.  11  Island ridge lines and points layout

    图  12  迎风侧最大加速比与差异系数分布

    Fig.  12  Maximum acceleration ratio and difference factor distribution on windward side

    图  13  不同坡度和高度的加速比及差异系数分布

    Fig.  13  Distribution of acceleration ratio and difference factor for different slopes and heights

    图  14  坡顶(A11)湍流强度和空风洞的湍流强度对比

    Fig.  14  Comparison of turbulence intensity between top of slope (A11) and air tunnel

    图  16  迎风侧和背风侧阵风因子分布

    Fig.  16  Gust factor distribution on windward and leeward sides

    图  15  迎风侧和背风侧湍流强度分布

    Fig.  15  Turbulence intensity distribution on windward and leeward sides

    表  1  海岛参数

    Tab.  1  Island parameters

    序号高度H/m底面直径D/m坡度(2H/D
    海岛海岛模型海岛海岛模型
    1100.000.20746.411.4915°
    2100.000.20428.900.8625°
    3100.000.20285.631735°
    下载: 导出CSV
  • [1] Guo Jian. Key technical innovation of Xihoumen Bridge—the longest steel box gird suspension bridge in the world[J]. Engineering Sciences, 2010, 8(4): 18−22.
    [2] 肖仪清, 李朝, 欧进萍, 等. 复杂地形风能评估的CFD方法[J]. 华南理工大学学报(自然科学版), 2009, 37(9): 30−35.

    Xiao Yiqing, Li Chao, Ou Jinping, et al. CFD approach to evaluation of wind energy in complex terrain[J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(9): 30−35.
    [3] Wang Tong, Cao Shuyang, Ge Yaojun. Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills[J]. Wind and Structures, 2014, 19(2): 219−232. doi: 10.12989/was.2014.19.2.219
    [4] Cao Shuyang, Wang Tong, Ge Yaojun, et al. Numerical study on turbulent boundary layers over two-dimensional hills-effects of surface roughness and slope[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104−106: 342−349. doi: 10.1016/j.jweia.2012.02.022
    [5] 李正良, 孙毅, 魏奇科, 等. 山地平均风加速效应数值模拟[J]. 工程力学, 2010, 27(7): 32−37.

    Li Zhengliang, Sun Yi, Wei Qike, et al. Numerical simulation of mean velocity speed-up effect in hilly terrain[J]. Engineering Mechanics, 2010, 27(7): 32−37.
    [6] 孙毅, 李正良, 黄汉杰, 等. 山地风场平均及脉动风速特性试验研究[J]. 空气动力学学报, 2011, 29(5): 593−599. doi: 10.3969/j.issn.0258-1825.2011.05.010

    Sun Yi, Li Zhengliang, Huang Hanjie, et al. Experimental research on mean and fluctuating wind velocity in hilly terrain wind field[J]. Acta Aerodynamica Sinica, 2011, 29(5): 593−599. doi: 10.3969/j.issn.0258-1825.2011.05.010
    [7] 李正昊, 楼文娟, 章李刚, 等. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848−855. doi: 10.3785/j.issn.1008973X.2016.05.006

    Li Zhenghao, Lou Wenjuan, Zhang Ligang, et al. Numerical simulation of effects of topographic factors on wind speed in col[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5): 848−855. doi: 10.3785/j.issn.1008973X.2016.05.006
    [8] 陈政清, 李春光, 张志田, 等. 山区峡谷地带大跨度桥梁风场特性试验[J]. 实验流体力学, 2008, 22(3): 54−59, 67. doi: 10.3969/j.issn.1672-9897.2008.03.012

    Chen Zhengqing, Li Chunguang, Zhang Zhitian, et al. Model test study of wind field characteristics of long-span bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 54−59, 67. doi: 10.3969/j.issn.1672-9897.2008.03.012
    [9] 李永乐, 蔡宪棠, 唐康, 等. 深切峡谷桥址区风场空间分布特性的数值模拟研究[J]. 土木工程学报, 2011, 44(2): 116−122.

    Li Yongle, Cai Xiantang, Tang Kang, et al. Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation[J]. China Civil Engineering Journal, 2011, 44(2): 116−122.
    [10] 于舰涵, 李明水, 廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报, 2016, 51(4): 654−662. doi: 10.3969/j.issn.0258-2724.2016.04.008

    Yu Jianhan, Li Mingshui, Liao Haili. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 654−662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    [11] Vladut A C, Cosoiu C I, Georgescu A M, et al. Wind tunnel and numerical modeling of atmospheric boundary layer flow over Bolund Island[J]. Energy Procedia, 2016, 85: 603−611. doi: 10.1016/j.egypro.2015.12.250
    [12] 杨秋彦, 苗峻峰, 王语卉. 海南岛地形对局地海风环流结构影响的数值模拟[J]. 海洋学报, 2017, 39(3): 24−43.

    Yang Qiuyan, Miao Junfeng, Wang Yuhui. A numerical study of impact of topography on sea breeze circulation over the Hainan Island[J]. Haiyang Xuebao, 2017, 39(3): 24−43.
    [13] 宋超辉, 王楠, 王阔, 等. 基于1988−2017年CCMP数据的浙江沿海海表风速变化及成因[J]. 大气科学学报, 2019, 42(4): 562−570.

    Song Chaohui, Wang Nan, Wang Kuo, et al. Variation and cause of sea surface wind speed in Zhejiang coastal area based on CCMP data from 1988 to 2017[J]. Transactions of Atmospheric Sciences, 2019, 42(4): 562−570.
    [14] Chou Jieming, Dong Wenjie, Tu Gang, et al. Spatiotemporal distribution of landing tropical cyclones and disaster impact analysis in coastal China during 1990−2016[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 115: 102830. doi: 10.1016/j.pce.2019.102830
    [15] 交通运输部. JTG/T 3360−01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018.

    Ministry of Transport of the People’s Republic of China. JTG/T 3360−01−2018, wind-resistant design specification for highway bridges[S]. Beijing: People’s Communications Press, 2018.
    [16] 中华人民共和国住房和城乡建设部. GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012: 30−33, 218−222.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50009−2012, load code for the design of building structures[S]. Beijing: China Architecture & Building Press, 2012: 30−33, 218−222.
    [17] 唐煜, 郑史雄, 赵博文, 等. 平衡大气边界层自保持问题的研究[J]. 工程力学, 2014, 31(10): 129−135. doi: 10.6052/j.issn.1000-4750.2013.04.0376

    Tang Yu, Zheng Shixiong, Zhao Bowen, et al. Numerical investigation on the self-sustaining of equilibrium atmosphere boundary layers[J]. Engineering Mechanics, 2014, 31(10): 129−135. doi: 10.6052/j.issn.1000-4750.2013.04.0376
    [18] Weng Wensong, Taylor P A, Walmsley J L. Guidelines for airflow over complex terrain: Model developments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86(2/3): 169−186.
    [19] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004.

    Wang Fujun. Computational Fluid Dynamics Analysis[M]. Beijing: Tsinghua University Press, 2004.
    [20] Richards P J, Younis B A. Comments on “Prediction of the wind-generated pressure distribution around buildings” by E. H. Mathews[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 34(1): 107−110. doi: 10.1016/0167-6105(90)90152-3
    [21] Architectural Institute of Japan. AIJ Recommendations for loads on buildings[S]. Tokyo: Architectural Institute of Japan Press, 2004.
    [22] 张善文, 刘建都, 韩小斌. 基于遗传算法的一种数据拟合方法[J]. 空军工程大学学报(自然科学版), 2007, 8(1): 66−68.

    Zhang Shanwen, Liu Jiandu, Han Xiaobin. A data fitness method based on genetic algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition), 2007, 8(1): 66−68.
    [23] Chen Fazu. Turbulent characteristics over a rough natural surface part I: Turbulent structures[J]. Boundary-Layer Meteorology, 1990, 52(1/2): 151−175.
    [24] Batchvarova E, Gryning S E. Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment[J]. Atmospheric Environment, 1998, 32(12): 2055−2069. doi: 10.1016/S1352-2310(97)00422-6
    [25] 洪新民, 郭文华, 熊安平. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版), 2017, 37(5): 56−64.

    Hong Xinmin, Guo Wenhua, Xiong Anping. Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 56−64.
    [26] 李加武, 徐润泽, 党嘉敏, 等. 喇叭口河谷地形基本风特性实测[J]. 长安大学学报(自然科学版), 2020, 40(6): 47−56.

    Li Jiawu, Xu Runze, Dang Jiamin, et al. Field measurement of basic wind characteristics of trumpet river valley[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(6): 47−56.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  119
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-04-17
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回