留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

印度洋–太平洋暖池区中尺度涡特征研究

龙霜 董庆 殷紫

龙霜,董庆,殷紫. 印度洋–太平洋暖池区中尺度涡特征研究[J]. 海洋学报,2022,44(3):118–127 doi: 10.12284/hyxb2022003
引用本文: 龙霜,董庆,殷紫. 印度洋–太平洋暖池区中尺度涡特征研究[J]. 海洋学报,2022,44(3):118–127 doi: 10.12284/hyxb2022003
Long Shuang,Dong Qing,Yin Zi. Statistical analysis of mesoscale eddies in the Indo-Pacific Warm Pool[J]. Haiyang Xuebao,2022, 44(3):118–127 doi: 10.12284/hyxb2022003
Citation: Long Shuang,Dong Qing,Yin Zi. Statistical analysis of mesoscale eddies in the Indo-Pacific Warm Pool[J]. Haiyang Xuebao,2022, 44(3):118–127 doi: 10.12284/hyxb2022003

印度洋–太平洋暖池区中尺度涡特征研究

doi: 10.12284/hyxb2022003
基金项目: 国家自然科学基金(41876210,41801355);中国科学院战略性先导科技专项(A类)(XDA19060504)。
详细信息
    作者简介:

    龙霜(1995-),女,四川省绵阳市人,主要从事海洋遥感研究。E-mail:longshuang18@mails.ucas.ac.cn

    通讯作者:

    董庆,研究员,主要从事海洋过程遥感监测方法研究。E-mail: dongqing@aircas.ac.cn

  • 中图分类号: P731

Statistical analysis of mesoscale eddies in the Indo-Pacific Warm Pool

  • 摘要: 本文利用1993年2月至2016年1月共23年的中尺度涡数据,对印度洋–太平洋暖池区(即印–太暖池区,15°S~15°N,60°E~170°W)中尺度涡的生命周期、振幅和半径等属性特征以及生命周期内各参数的演变特征进行了统计分析,并研究了印–太暖池区中尺度涡生成个数的季节变化规律及与厄尔尼诺循环的关系。结果表明:印–太暖池区大部分中尺度涡存在生命周期短、非线性、向西移动的特征;气旋涡与反气旋涡各参数的统计特征及其在生命周期内的变化趋势较为相似;印–太暖池区中尺度涡生成个数不具有明显的季节变化,并且会受到厄尔尼诺–南方涛动事件的影响。
  • 图  1  热带印度洋–西太平洋多年(1993年1月至2019年12月)海表温度大于28.5℃的海域

    Fig.  1  The sea domain with sea surface temperature larger than 28.5℃ in the tropical Indian Ocean-western Pacific Ocean from January 1993 to December 2019

    图  2  印度洋–太平洋暖池区中尺度涡生命周期分布特征

    a. 生命周期频率分布;b. 短周期、中周期和长周期涡旋百分比;c. 短周期、中周期和长周期中尺度涡生成个数的空间分布(从上到下:短周期、中周期、长周期)

    Fig.  2  Statistical characteristics of mesoscale eddy lifetime in the Indo-Pacific Warm Pool

    a. Frequency distribution of mesoscale eddy lifetime; b. percentage of mesoscale eddies with short, medium and long lifetime; c. spatial distribution of mesoscale eddies with short, medium and long lifetime (from top to bottom: short lifetime, medium lifetime and long lifetime)

    图  3  印度洋−太平洋暖池区中尺度涡振幅与半径分布特征

    Fig.  3  Statistical characteristics of amplitude and radius of mesoscale eddy in the Indo-Pacific Warm Pool

    图  4  印度洋−太平洋暖池区气旋涡(a)和反气旋涡(b)非线性程度频率分布

    Fig.  4  Frequency distribution of nonlinearity of cyclones (a) and anticyclones (b) in the Indo-Pacific Warm Pool

    图  5  印度洋–太平洋暖池区中尺度涡运动学参数分布特征

    Fig.  5  Statistical characteristics of mesoscale eddy kinematic parameters in the Indo-Pacific Warm Pool

    图  6  印度洋–太平洋暖池区中尺度涡移动速度(a,c)和移动距离(b,d)分布特征

    a. 气旋涡移动速度频率分布;b. 气旋涡同起点轨迹图;c. 反气旋涡移动速度频率分布;d. 反气旋涡同起点轨迹图

    Fig.  6  Statistical characteristics of propagation speed (a, c) and trajectories (b, d) of mesoscale eddy in the Indo-Pacific Warm Pool

    a. Frequency distribution of propagation speed of cgclones; b. trajectories of the same starting point of cyclones; c. frequerncy distribution of propagation speed of anticyclones; d. trajectories of the same starting point of anticyclones

    图  7  印度洋−太平洋暖池区中尺度涡参数在生命周期内的演变特征

    Fig.  7  Evolution characteristics of mesoscale eddy parameters over lifecycle in the Indo-Pacific Warm Pool

    图  8  印度洋–太平洋暖池区中尺度涡生成个数季节变化

    a. 中尺度涡逐月生成数量;b. 中尺度涡生成数量空间分布的季节变化(从上到下依次为春、夏、秋、冬)

    Fig.  8  Seasonal variation of mesoscale eddy in the Indo-Pacific Warm Pool

    a. Monthly number of mesoscale eddies; b. seasonal spatial distribution of mesoscale eddies (from top to bottom: spring, summer, autumn and winter)

    图  9  印度洋–太平洋暖池区中尺度涡生成个数异常值在厄尔尼诺(a)及拉尼娜(b)事件中的变化

    Fig.  9  Variation of anomaly number of mesoscale eddy in the Indo-Pacific Warm Pool during El Niño (a) and La Niña (b)

    表  1  印度洋–太平洋暖池区中尺度涡参数的统计平均值

    Tab.  1  Statistical mean values of mesoscale eddy parameters in the Indo-Pacific Warm Pool

    参数气旋涡反气旋涡
    生命周期/周 6.53 6.27
    振幅/cm 2.86 2.42
    半径/km 90.88 84.50
    非线性 2.65 2.49
    移动速度/(cm·s−1) 14.52 14.67
    相对涡度/(10−6 s−1) 1.09 1.08
    剪切变形率/(10−8 s−1) –4.71 9.03
    延伸变形率/(10−8 s−1) 6.78 –5.68
    散度/(10−8 s−1) 1.43 –1.46
    下载: 导出CSV
  • [1] Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [2] Le Traon P Y, Morrow R. Chapter 3 ocean currents and eddies[J]. International Geophysics, 2001, 69: 171−215.
    [3] Yim B Y, Noh Y, Qiu B, et al. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2010, 40(2): 340−353. doi: 10.1175/2009JPO4243.1
    [4] Early J J, Samelson R M, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. Journal of Physical Oceanography, 2011, 41(8): 1535−1555. doi: 10.1175/2011JPO4601.1
    [5] Adams D K, McGillicuddy Jr D J, Zamudio L, et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents[J]. Science, 2011, 332(6029): 580−583. doi: 10.1126/science.1201066
    [6] Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6054): 328−332. doi: 10.1126/science.1208897
    [7] 刘汾汾. 南海中尺度涡生态效应的遥感研究[D]. 广州: 中国科学院南海海洋研究所, 2013.

    Liu Fenfen. A remote sensing study of biological responses to mesoscale eddies in the South China Sea[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2013.
    [8] 邱东晓, 黄菲, 杨宇星. 东印度洋−西太平洋暖池的年代际变化特征研究[J]. 中国海洋大学学报, 2007, 37(4): 525−532.

    Qiu Dongxiao, Huang Fei, Yang Yuxing. Interdecadal variability of the Indo-Pacific warm pool[J]. Periodical of Ocean University of China, 2007, 37(4): 525−532.
    [9] 邱云, 李燕初, 李立, 等. 印度洋−太平洋暖池海域表层水温分析[J]. 台湾海峡, 2010, 29(4): 547−554.

    Qiu Yun, Li Yanchu, Li Li, et al. Analysis of sea surface temperature in the Indo-Pacific warm pool[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(4): 547−554.
    [10] 李晓惠, 徐峰, 陈虹颖, 等. 1980−2016年西太平洋暖池与ENSO循环过程的相关分析[J]. 海洋气象学报, 2017, 37(3): 85−94.

    Li Xiaohui, Xu Feng, Chen Hongying, et al. Correlation analysis of the cycle process between the western Pacific warm pool and ENSO during 1980−2016[J]. Journal of Marine Meteorology, 2017, 37(3): 85−94.
    [11] Liu Yingjie, Chen Ge, Sun Miao, et al. A parallel SLA-based algorithm for global mesoscale eddy identification[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(12): 2743−2754. doi: 10.1175/JTECH-D-16-0033.1
    [12] Sun Miao, Tian Fenglin, Liu Yingjie, et al. An improved automatic algorithm for global eddy tracking using satellite altimeter data[J]. Remote Sensing, 2017, 9(3): 206. doi: 10.3390/rs9030206
    [13] Tian Fenglin, Wu Di, Yuan Liming, et al. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data[J]. International Journal of Remote Sensing, 2020, 41(8): 2835−2860. doi: 10.1080/01431161.2019.1694724
    [14] Wolter K, Timlin M S. Measuring the strength of ENSO events: How does 1997/98 rank?[J]. Weather, 1998, 53(9): 315−324. doi: 10.1002/j.1477-8696.1998.tb06408.x
    [15] Graham N E, Barnett T P. Sea surface temperature, surface wind divergence, and convection over tropical oceans[J]. Science, 1987, 238(4827): 657−659. doi: 10.1126/science.238.4827.657
    [16] Webster P J, Lukas R. TOGA COARE: The coupled ocean-atmosphere response experiment[J]. Bulletin of the American Meteorological Society, 1992, 73(9): 1377−1416. doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
    [17] Wang Chunzai, Enfield D B. The tropical western hemisphere warm pool[J]. Geophysical Research Letters, 2001, 28(8): 1635−1638. doi: 10.1029/2000GL011763
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  355
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-12-23
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回