留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于演化算符的南海海面高度异常中长期统计预报

李美莲 金慕君 纪增华 李威 梁康壮

李美莲,金慕君,纪增华,等. 基于演化算符的南海海面高度异常中长期统计预报[J]. 海洋学报,2021,43(12):122–132 doi: 10.12284/hyxb2021185
引用本文: 李美莲,金慕君,纪增华,等. 基于演化算符的南海海面高度异常中长期统计预报[J]. 海洋学报,2021,43(12):122–132 doi: 10.12284/hyxb2021185
Li Meilian,Jin Mujun,Ji Zenghua, et al. Medium and long term statistical prediction of sea surface height anomaly in the South China Sea based on evolutionary operator[J]. Haiyang Xuebao,2021, 43(12):122–132 doi: 10.12284/hyxb2021185
Citation: Li Meilian,Jin Mujun,Ji Zenghua, et al. Medium and long term statistical prediction of sea surface height anomaly in the South China Sea based on evolutionary operator[J]. Haiyang Xuebao,2021, 43(12):122–132 doi: 10.12284/hyxb2021185

基于演化算符的南海海面高度异常中长期统计预报

doi: 10.12284/hyxb2021185
基金项目: 国家自然科学基金(41876014)
详细信息
    作者简介:

    李美莲(1999-),女,广东省江门市人,主要从事海洋预报等方向研究。E-mail:limeilian@tju.edu.cn

    通讯作者:

    李威,男,教授,主要从事海洋数值预报、海洋数值模拟等方向研究。E-mail:liwei1978@tju.edu.cn

  • 中图分类号: P731.3

Medium and long term statistical prediction of sea surface height anomaly in the South China Sea based on evolutionary operator

  • 摘要: 水下移动平台行动时需要1~3个月左右海洋数值预测预报结果,但是当前数值预报技术受对应的气象驱动场预报时效的限制,难以提供10 d以上的数值预报产品。鉴于海水在动力热力上具有较大的惯性,海洋内区有其自身的演化规律,本研究设计了一种基于演化算符的统计预测方法,利用历史卫星遥感资料构建海洋状态变量中长期演化矩阵,并结合惯性预报模型,构建了最终的南海海洋中长期统计预报模型,能够提供1~60 d逐日的南海海面高度异常预测结果,开展数值试验验证了该方法的有效性,结果表明,在起报后15 d内,预报结果与卫星资料的相关系数均大于0.8,在起报60 d内,相关系数仍高于0.6。
  • 图  1  3种预报方法与真实值的相关系数

    Fig.  1  Correlation coefficients between three forecasting methods and real values

    图  2  3种预报方法与真实值的均方根误差

    Fig.  2  Root mean square error between three forecasting methods and real values

    图  3  海面高度异常统计预报结果与卫星观测结果

    Fig.  3  Statistical prediction results and satellite observation results of sea surface height anomalies

    图  4  海面高度异常预测结果与卫星观测结果相对于预测起始点的增量

    Fig.  4  The increment of prediction results and satellite observation results relative to the predicted starting point of sea surface height anomaly

    图  5  演化算符预报与惯性预报方差的曲线拟合

    Fig.  5  Curve fitting of evolutionary operator prediction and inertial prediction error

    图  6  综合模型与3种模型的均方根误差与相关系数对比

    a. 4种预报方法与真实值的均方根误差;b. 4种预报方法与真实值的相关系数

    Fig.  6  Comparison of root mean square error and correlation coefficients between the comprehensive model and the three models

    a. Four forecasting methods with real values root mean square error; b. correlation coefficients between four forecasting methods and real values

    图  7  选取的截面

    Fig.  7  Selected sections

    图  8  综合模型与3种模型的时间−站点图

    Fig.  8  Time-to-site diagram of the synthesis model and the three models

  • [1] 乔方利. 海洋动力环境要素数值预报关键技术[J]. 海洋开发与管理, 2006, 23(5): 59−60. doi: 10.3969/j.issn.1005-9857.2006.05.017

    Qiao Fangli. Key technology of NWP: Dynamic elements of marine environment[J]. Ocean Development and Management, 2006, 23(5): 59−60. doi: 10.3969/j.issn.1005-9857.2006.05.017
    [2] 徐洋, 齐久成, 李清, 等. 美国海军业务化海洋预报系统综述[J]. 舰船科学技术, 2016, 38(5): 142−146. doi: 10.3404/j.issn.1672-7619.2016.05.030

    Xu Yang, Qi Jiucheng, Li Qing, et al. Overview of US navy operational ocean prediction system[J]. Ship Science and Technology, 2016, 38(5): 142−146. doi: 10.3404/j.issn.1672-7619.2016.05.030
    [3] Carman J C, Eleuterio D P, Gallaudet T C, et al. The national earth system prediction capability: Coordinating the giant[J]. Bulletin of the American Meteorological Society, 2016, 98(2): 239−252.
    [4] 杨德全, 郝日栩, 何健新, 等. 统计预报方法在海洋预报中的应用研究进展[J]. 海洋信息, 2019, 34(2): 1−9.

    Yang Dequan, Hao Rixu, He Jianxin, et al. Research progress of statistical forecasting methods in ocean prediction[J]. Marine Information, 2019, 34(2): 1−9.
    [5] Barnston A G, Smith T M. Specification and prediction of global surface temperature and precipitation from global SST using CCA[J]. Journal of Climate, 1996, 9(11): 2660−2697. doi: 10.1175/1520-0442(1996)009<2660:SAPOGS>2.0.CO;2
    [6] Landman W A, Mason S J. Forecasts of near-global sea surface temperatures using canonical correlation analysis[J]. Journal of Climate, 2001, 14(18): 3819−3833. doi: 10.1175/1520-0442(2001)014<3819:FONGSS>2.0.CO;2
    [7] Niedzielski T, Kosek W. Multivariate stochastic prediction of the global mean sea level anomalies based on TOPEX/Poseidon satellite altimetry[J]. Artificial Satellites, 2005, 40(3): 185−198.
    [8] Ubilava D, Helmers C G. Forecasting ENSO with a smooth transition autoregressive model[J]. Environmental Modelling & Software, 2013, 40: 181−190.
    [9] Garcia-Gorriz E, Garcia-Sanchez J. Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations[J]. Geophysical Research Letters, 2007, 34(11): L11603. doi: 10.1029/2007GL029888
    [10] 孙文, 王庆宾, 周睿, 等. 海平面异常序列预报方法的比较与分析[J]. 测绘通报, 2014(1): 46−49.

    Sun Wen, Wang Qingbin, Zhou Rui, et al. A comparison and analysis of methods of sea level anomaly time series forecasting[J]. Bulletin of Surveying and Mapping, 2014(1): 46−49.
    [11] 李晓静. 基于概率神经网络与多重分形的海温预测模型[J]. 统计与决策, 2017(18): 84−87.

    Li Xiaojing. Prediction model of sea surface temperature based on probabilistic neural network and multifractal[J]. Statistics and Decision, 2017(18): 84−87.
    [12] 陈亚飞, 王晓春, 刘屹岷. 中国近海海面高度异常资料再处理[J]. 海洋科学, 2016, 40(7): 151−159. doi: 10.11759/hykx20150818001

    Chen Yafei, Wang Xiaochun, Liu Yimin. Sea level anomaly reprocessing for Chinese coastal region[J]. Marine Sciences, 2016, 40(7): 151−159. doi: 10.11759/hykx20150818001
    [13] Vybíral J. A variant of Schur's product theorem and its applications[J]. Advances in Mathematics, 2020, 368: 107140. doi: 10.1016/j.aim.2020.107140
    [14] 邹颖俊, 王晓春, 何贤强. 基于统计学方法的HYCOM海洋预报结果评价[J]. 湘潭大学自然科学学报, 2018, 40(3): 104−108.

    Zou Yingjun, Wang Xiaochun, He Xianqiang. Evaluation of HYCOM ocean forecasting fields based on statistical method[J]. Natural Science Journal of Xiangtan University, 2018, 40(3): 104−108.
    [15] 梁广建, 苏晓亮, 李淑君, 等. 南海海域MODAS有效性检验及误差分析[J]. 海洋技术, 2013, 32(3): 40−45.

    Liang Guangjian, Su Xiaoliang, Li Shujun, et al. The validity examination and error analysis of MODAS in South China Sea[J]. Ocean Technology, 2013, 32(3): 40−45.
    [16] 张晓芳, 贾思洋, 张曙伟, 等. 海洋垂直剖面水温实时监测浮标系统研制与应用[J]. 海洋科学, 2016, 40(5): 109−114. doi: 10.11759/hykx20140507002

    Zhang Xiaofang, Jia Siyang, Zhang Shuwei, et al. Research and application of real-time monitoring buoy system for marine water temperatures of vertical profiles[J]. Marine Sciences, 2016, 40(5): 109−114. doi: 10.11759/hykx20140507002
  • 加载中
图(8)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  121
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 修回日期:  2021-01-28
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回