留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

规则波下刚性植物根茎对边界层最大剪切力特性影响研究

李勰 陈杰 蒋昌波 姚震 罗元拼 罗婉娇

李勰,陈杰,蒋昌波,等. 规则波下刚性植物根茎对边界层最大剪切力特性影响研究[J]. 海洋学报,2021,43(12):102–110 doi: 10.12284/hyxb2021181
引用本文: 李勰,陈杰,蒋昌波,等. 规则波下刚性植物根茎对边界层最大剪切力特性影响研究[J]. 海洋学报,2021,43(12):102–110 doi: 10.12284/hyxb2021181
Li Xie,Chen Jie,Jiang Changbo, et al. Study on the influence of rigid plant roots and stems on the maximum shearing characteristics of boundary layer under regular wave[J]. Haiyang Xuebao,2021, 43(12):102–110 doi: 10.12284/hyxb2021181
Citation: Li Xie,Chen Jie,Jiang Changbo, et al. Study on the influence of rigid plant roots and stems on the maximum shearing characteristics of boundary layer under regular wave[J]. Haiyang Xuebao,2021, 43(12):102–110 doi: 10.12284/hyxb2021181

规则波下刚性植物根茎对边界层最大剪切力特性影响研究

doi: 10.12284/hyxb2021181
基金项目: 国家自然科学基金重点项目(51839002);国家自然科学基金面上项目(51979014);国家重点研发计划(2021YFB2601100);湖南省研究生教育创新工程和专业能力提升工程项目(CX20200858);长沙理工大学水利与环境工程学院院级研究生实验创新项目。
详细信息
    作者简介:

    李勰(1997—),男,湖南省常德市人,主要从事海岸动力过程及其模拟技术研究。E-mail:1319394361@qq.com

    通讯作者:

    陈杰(1982—),男,广西省桂林市人,博士,教授,主要从事海岸防灾减灾研究。E-mail:chenjie166@163.com

  • 中图分类号: TV139.2;P731.22

Study on the influence of rigid plant roots and stems on the maximum shearing characteristics of boundary layer under regular wave

  • 摘要: 基于考虑根茎影响的近岸植物消波实验,对边界层的最大剪切力特性进行了研究。利用前人提出的规则波下含植物水流的边界层流速计算公式,探究了单独根和根茎组合两种植物模型的边界层最大剪切力特性,分析了两种模型的剪切力的沿程变化、植物对剪切力衰减特性的影响,拟合了衰减系数的公式。研究表明,波浪在通过植物带时,剪切力会出现一定幅度增大,随后逐渐降低。植物对剪切力的消减效果随入射波高的增大而增大,且茎有助于根群对边界层最大剪切力的消减作用,其消减系数的范围为0.06~0.61,拟合的公式更加适用于水深较浅的情况。
  • 图  1  实验布置(单位:m)

    Fig.  1  Sketch of experment (unit:m)

    图  2  植物模型

    Fig.  2  Plant models

    图  3  雷诺数计算结果

    Fig.  3  Reynolds number calculation results

    图  4  单独根模型剪切力沿程衰减规律

    Fig.  4  The variation of shear force attenuation along the way with roots alone

    图  5  根+茎模型影响下的剪切力沿程衰减规律

    Fig.  5  The variation of shear force attenuation along the way with roots and stems

    图  6  衰减系数变化规律

    Fig.  6  The variation of attenuation coefficient

    图  7  剪切力消减系数与无量纲参数之间的关系

    Fig.  7  Relationship between shearing force reduction coefficient and dimensionless parameter

    表  1  实验工况

    Tab.  1  Expermental cases

    水深h/cm周期T/s波高H/cm
    30.0,35.01.0,1.3,1.6,1.94.0,6.0,8.0,10.0
    下载: 导出CSV
  • [1] 陈杰, 何飞, 蒋昌波, 等. 植物消波机制的实验与理论解析研究进展[J]. 水科学进展, 2018, 29(3): 433−445.

    Chen Jie, He Fei, Jiang Changbo. Advances in laboratory experiment, theoretical analysis of mechanism of wave attenuation by vegetation[J]. Advances in Water Science, 2018, 29(3): 433−445.
    [2] Horstman E, Dohmenjanssen C M, Narra P M, et al. Wave attenuation in mangroves: A quantitative approach to field observations[J]. Coastal Engineering, 2014, 94(12): 47−62.
    [3] Chen J, Duan Z, Jiang C B, et al. Laboratory study on tsunami erosion and deposition under protection of rigid emergent vegetation[J]. Natural Hazards, 2018, 92(2): 995−1010. doi: 10.1007/s11069-018-3235-x
    [4] 陈杰, 何飞, 蒋昌波, 等. 规则波作用下刚性植物拖曳力系数实验研究[J]. 水利学报, 2017, 48(7): 846−857.

    Chen Jie, He Fei, Jiang Changbo, et al. Experimental investigation on drag coefficient of rigid vegetation influenced by regular waves[J]. Journal of Hydraulic Engineering, 2017, 48(7): 846−857.
    [5] He Fei, Chen Jie, Jiang Changbo. Surface wave attenuation by vegetation with the stem, root and canopy[J]. Coastal Engineering, 2019, 152: 103509.
    [6] 徐海珏, 胡萍, 白玉川, 等. 木本植被覆盖岸坡上波浪爬升过程的数值模拟研究[J]. 海洋学报, 2020, 42(3): 10−42.

    Xu Haijue, Hu Pin, Bai Yuchuan, et al. Numerical simulation for wave climbing process on woody plants covered slope[J]. Haiyang Xuebao, 2020, 42(3): 10−42.
    [7] 唐军, 沈永明, 崔雷. 基于抛物型缓坡方程模拟近岸植被区波浪传播[J]. 海洋学报, 2011, 33(1): 7−11.

    Tang Jun, Shen Yongming, Cui Lei. Modeling coastal water wave propagation in vegetation field based on parabolic mild slope equation[J]. Haiyang Xuebao, 2011, 33(1): 7−11.
    [8] Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1984, 110(1): 67−79.
    [9] Husrin S, Strusinska A, Oumeraci H. Experimental study on tsunami attenuation by mangrove forest[J]. Earth, Planets and Space, 2012, 64(10): 973−989. doi: 10.5047/eps.2011.11.008
    [10] 曾思益, 陈杰, 蒋昌波, 等. 基于根茎叶概化模型的孤立波消减特性实验[J]. 海洋科学进展, 2019, 37(4): 588−600.

    Zeng Siyi, Chen Jie, Jiang Changbo, et al. Experimental investigation of the effects of vegetation on solitary wave attenuation based on a generalized model of root, stem and canopy[J]. Advances in Marine Science, 2019, 37(4): 588−600.
    [11] 彭浩, 陈杰, 蒋昌波, 等. 单株和簇状植物分布方式对消波的影响试验[J]. 水利水电科技进展, 2019, 39(4): 27−34.

    Peng Hao, Chen Jie, Jiang Changbo, et al. Experimental study on wave attenuation effects by single and patchy rigid vegetation[J]. Water Resources and Hydropower Engineering, 2019, 39(4): 27−34.
    [12] Luhar M, Coutu S, Infantes E, et al. Wave-induced velocities inside a model seagrass bed[J]. Journal of Geophysical Research: Oceans, 2010, 115: C12005. doi: 10.1029/2010JC006345
    [13] 陈杰, 管喆, 蒋昌波. 海啸波作用下泥沙运动——Ⅴ. 红树林影响下的岸滩变化[J]. 水科学进展, 2016, 27(2): 206−213.

    Chen Jie, Guan Zhe, Jiang Changbo. Study of sediment transport by tsunami waves: V. influence of mangrove[J]. Advances in Water Science, 2016, 27(2): 206−213.
    [14] 陈杰, 刘静, 蒋昌波, 等. 波浪作用下泥沙运动研究综述[J]. 泥沙研究, 2014(4): 74−80.

    Chen Jie, Liu Jing, Jiang Changbo, et al. Review of sediment transport under waves[J]. Journal of Sediment Research, 2014(4): 74−80.
    [15] 陈杰, 蒋昌波, 邓斌, 等. 海啸波作用下岸滩演变与床沙组成变化研究综述[J]. 水科学进展, 2013, 24(5): 750−758.

    Chen Jie, Jiang Changbo, Deng Bin, et al. Review of beach profile changes and sorting of sand grains by tsunami waves[J]. Advances in Water Science, 2013, 24(5): 750−758.
    [16] 曹祖德, 孔令双, 焦桂英. 波、流共同作用下的泥沙起动[J]. 海洋学报, 2003, 25(3): 113−119.

    Cao Zude, Kong Lingshuang, Jiao Guiying. Initiation of sediment movement for a wave-current coexistent system[J]. Haiyang Xuebao, 2003, 25(3): 113−119.
    [17] Galen E, Marianne C, Oliver F, et al. Observations of near-bed shear stress in a shallow, wave-and current-driven flow[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 6323−6344.
    [18] Xu Hua, Xia Yunfeng, Ma Binghe, et al. Research on measurement of bed shear stress under wave-current interaction[J]. Chinese Ocean Engineering Society, 2015, 29(4): 589−598. doi: 10.1007/s13344-015-0041-z
    [19] 王运洪. 泥沙起动规律的研究[J]. 海洋学报, 1984, 6(6): 874-880.

    Wang Yunhong. Study on initiation of sediment[J]. Haiyang Xuebao, 1984, 6(6):874−880.
    [20] Abreu T, Michallet H, Silva P A, et al. Bed shear stress under skewed and asymmetric oscillatory flows[J]. Coastal Engineering, 2013, 73(3): 1−10.
    [21] Walter B L, Gromke C B, Lehning M, et al. Shear-stress partitioning in live plant canopies and modifications to raupach’s model[J]. Boundary-Layer Meteorology, 2012, 144(2): 217−241.
    [22] Jonsson I G. Wave boundary layers and friction factors[J]. Coastal Engineering, 1967: 127−148.
    [23] Tanaka N, Sasaki Y, Mowjood M I M, et al. Coastal vegetation structures and their functions in tsunami protection: Experience of the recent Indian Ocean tsunami[J]. Landscape & Ecological Engineering, 2007, 3(1): 33−45.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  81
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2021-06-01
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回