留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离岸流灾害水动力学过程的数值模拟研究

田海平 陈雷 王维 辛立彪

田海平,陈雷,王维,等. 离岸流灾害水动力学过程的数值模拟研究[J]. 海洋学报,2021,43(12):92–101 doi: 10.12284/hyxb2021175
引用本文: 田海平,陈雷,王维,等. 离岸流灾害水动力学过程的数值模拟研究[J]. 海洋学报,2021,43(12):92–101 doi: 10.12284/hyxb2021175
Tian Haiping,Chen Lei,Wang Wei, et al. Numerical simulation of the hydrodynamic process of rip current hazard[J]. Haiyang Xuebao,2021, 43(12):92–101 doi: 10.12284/hyxb2021175
Citation: Tian Haiping,Chen Lei,Wang Wei, et al. Numerical simulation of the hydrodynamic process of rip current hazard[J]. Haiyang Xuebao,2021, 43(12):92–101 doi: 10.12284/hyxb2021175

离岸流灾害水动力学过程的数值模拟研究

doi: 10.12284/hyxb2021175
基金项目: 国家自然科学基金(11802195);山西省应用基础研究项目青年科技研究项目(201801D221027);太原理工大学教学改革项目(TLJ2021066,TLJ2019072)。
详细信息
    作者简介:

    田海平(1988—),男,河北省衡水市人,博士,副教授,主要从事复杂流动水动力学特性研究。E-mail: tianhaiping88@126.com

    通讯作者:

    陈雷(1997—),男,四川省南充市人,主要从事离岸流水动力学数值模拟研究。E-mail: chenleityut@126.com

  • 中图分类号: P731.2

Numerical simulation of the hydrodynamic process of rip current hazard

  • 摘要: 离岸流是近岸流的重要组成部分,当波浪受到特殊海滩地形的影响,会形成一股沿着离岸方向运动的高速水流,能够迅速将人带离海岸,对海滨安全造成威胁。为了深入探究离岸流的形成机理及水动力学特性,本文基于二阶Stokes波浪理论,采用了更为光滑的变截面沙坝模型,通过流体体积法捕捉自由液面,对离岸流进行三维数值模拟探究。本文重点分析了离岸流产生时流场的瞬时速度、时均速度、压强等不同参量的分布规律,结果显示在沙坝和海岸线之间,有一对方向相反的水循环体系;对比不同流层离岸流的速度,了解到波浪与离岸流的耦合作用;并探究了入射波波高对离岸流强度及分布区域的影响,深化了对离岸流水动力学过程的认识。
  • 图  1  离岸流结构示意图

    Fig.  1  Schematic diagram of rip currents

    图  2  可产生离岸流的典型海滩计算模型

    Fig.  2  Typical beach calculation model which can produce rip current

    图  3  液面高度随时间的变化

    Fig.  3  The height of the liquid level varies with time

    图  4  1个周期内离岸方向(X)速度云图

    Fig.  4  Velocity cloud distribution of offshore direction (X) velocity in a period

    图  5  1个周期内沿岸方向(Z)速度云图

    Fig.  5  Velocity cloud distribution of coastal direction (Z) velocity cloud map in a period

    图  6  波浪表面速度$ u $分布

    Fig.  6  Offshore velocity $ u $ distribution of wave surface

    图  7  离岸流流场特性的三维结构

    Fig.  7  The 3-D structure of rip current

    图  8  不同等压面上$\bar u $分布

    Fig.  8  The velocity distribution of $\bar u $ under different isobaric surfaces

    图  9  不同流层$\bar u $随离岸方向变化

    Fig.  9  The velocity distribution of $\bar u $ at different flow layer along the offshore direction

    图  10  流颈附近$\bar u $随水位变化

    Fig.  10  The velocity distribution of $\bar u $ near the neck of ripcurrent varies with the water level

    图  11  速度u沿离岸方向X的分布

    Fig.  11  The velocity distribution of ualong the offshore direction X

    图  12  速度w在沿岸方向Z的分布

    Fig.  12  The velocity distribution of walong the coastal direction Z

    图  13  时均速度$\bar u $在沿岸方向Z的分布

    Fig.  13  The mean velocity distribution of $\bar u $along the coastal direction Z

    表  1  不同波高的Ursell数

    Tab.  1  Ursell number of different wave heights

    波高/m0.250.30.350.4
    Ur5.356.427.498.56
    下载: 导出CSV
  • [1] Dalrymple R A, MacMahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43: 551−581. doi: 10.1146/annurev-fluid-122109-160733
    [2] Sonu C J. Field observation of nearshore circulation and meandering currents[J]. Journal of Geophysical Research, 1972, 77(18): 3232−3247. doi: 10.1029/JC077i018p03232
    [3] Short A D, Hogan C L. Rip currents and beach hazards: Their impact on public safety and implications for coastal management[J]. Journal of Coastal Research, 1994(12): 197−209.
    [4] 任春平, 白玉川. 规则波导斯托克斯漂移对污染物输移的影响[J]. 水科学进展, 2017, 28(4): 605−613.

    Ren Chunping, Bai Yuchuan. Effects of Stokes drift induced by regular waves on pollutant transport[J]. Advances in Water Science, 2017, 28(4): 605−613.
    [5] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [6] Winter G. Rip current characteristics at the Dutch coast: Egmond aan zee[D]. Delft, The Netherlands: Delft University of Technology, 2012.
    [7] 孟凡昌, 李本霞. 裂流的研究综述[J]. 海洋预报, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011

    Meng Fanchang, Li Benxia. Review on the study of the rip current[J]. Marine Forecasts, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011
    [8] 田海平, 伊兴睿, 王维. 警惕海滩隐形杀手——离岸流[J]. 力学与实践, 2020, 42(3): 381−387. doi: 10.6052/1000-0879-19-413

    Tian Haiping, Yi Xingrui, Wang Wei. Beware of the beach hidden killer—rip current[J]. Mechanics in Engineering, 2020, 42(3): 381−387. doi: 10.6052/1000-0879-19-413
    [9] 王彦, 邹志利. 海岸裂流的研究进展及其展望[J]. 海洋学报, 2014, 36(5): 170−176.

    Wang Yan, Zou Zhili. Progress and prospect of rip currents[J]. Haiyang Xuebao, 2014, 36(5): 170−176.
    [10] Shepard F P, Emery K O, La Fond E C. Rip currents: A process of geological importance[J]. The Journal of Geology, 1941, 49(4): 337−369. doi: 10.1086/624971
    [11] Longuet-Higgins M S, Stewart R W. Radiation stresses in water waves: a physical discussion, with applications[J]. Deep-Sea Research and Oceanographic Abstracts, 1964, 11(4): 529−562. doi: 10.1016/0011-7471(64)90001-4
    [12] Liu P, Dalrymple R. Bottom frictional stresses and longshore currents due to waves with large angles of incidence[J]. Journal of Marine Research, 1978, 36(2): 357−375.
    [13] Haas K A, Svendsen I A, Haller M C, et al. Quasi-three-dimensional modeling of rip current systems[J]. Journal of Geophysical Research, 2003, 108(C7): 3217. doi: 10.1029/2002JC001355
    [14] 房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26(4): 479−486.

    Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479−486.
    [15] 王彦, 邹志利. 叠加波浪有槽缓坡沙坝地形裂流试验[J]. 应用基础与工程科学学报, 2015, 23(6): 1166−1173.

    Wang Yan, Zou Zhili. Experimental study of rip currents by intersecting wave on barred beach of mild slopes with rip channel[J]. Journal of Basic Science and Engineering, 2015, 23(6): 1166−1173.
    [16] Wang Hong, Zhu Shouxian, Li Xunqiang, et al. Numerical simulations of rip currents off arc-shaped coastlines[J]. Acta Oceanologica Sinica, 2018, 37(3): 21−30. doi: 10.1007/s13131-018-1197-1
    [17] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201−225. doi: 10.1016/0021-9991(81)90145-5
    [18] Haller M C, Dalrymple R A, Svendsen I A. Experimental modeling of a rip current system[C]// Proceedings of the 3rd International Symposium on Ocean Wave Measurement and Analysis. Virginia Beach, VA: ASCE, 1997: 750−764.
    [19] Chen Qin, Dalrymple R A, Kirby J T, et al. Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research, 1999, 104(C9): 20617−20637. doi: 10.1029/1999JC900154
    [20] Ursell F. The long-wave paradox in the theory of gravity waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(4): 685−694. doi: 10.1017/S0305004100028887
    [21] 房克照, 尹继伟, 邹志利. 单沟槽沙坝海岸的裂流实验研究[J]. 水动力学研究与进展, 2013, 28(3): 363−369.

    Fang Kezhao, Yin Jiwei, Zou Zhili. Experiment study on rip current of barred beach with a single channel[J]. Chinese Journal of Hydrodynamics, 2013, 28(3): 363−369.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  81
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 修回日期:  2020-10-30
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回