留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台湾海峡有效波高的SWAN模式与ERA-Interim数据对比分析

王奎 岳显昌 吴雄斌 周恒 滕陈轲敏

王奎,岳显昌,吴雄斌,等. 台湾海峡有效波高的SWAN模式与ERA-Interim数据对比分析[J]. 海洋学报,2021,43(12):15–25 doi: 10.12284/hyxb2021173
引用本文: 王奎,岳显昌,吴雄斌,等. 台湾海峡有效波高的SWAN模式与ERA-Interim数据对比分析[J]. 海洋学报,2021,43(12):15–25 doi: 10.12284/hyxb2021173
Wang Kui,Yue Xianchang,Wu Xiongbin, et al. Comparative analysis of SWAN model and ERA-Interim data on significant wave height in the Taiwan Strait[J]. Haiyang Xuebao,2021, 43(12):15–25 doi: 10.12284/hyxb2021173
Citation: Wang Kui,Yue Xianchang,Wu Xiongbin, et al. Comparative analysis of SWAN model and ERA-Interim data on significant wave height in the Taiwan Strait[J]. Haiyang Xuebao,2021, 43(12):15–25 doi: 10.12284/hyxb2021173

台湾海峡有效波高的SWAN模式与ERA-Interim数据对比分析

doi: 10.12284/hyxb2021173
基金项目: 广东省重点领域研发计划(2020B1111020005);科技部重点研发计划(2016YFC1401100);自然科学基金面上项目(61771352)
详细信息
    作者简介:

    王奎(1996-),男,河南省驻马店市人,主要从事海洋动力学及数值模拟方向研究。E-mail:wang_kui@whu.edu.cn

    通讯作者:

    岳显昌,副教授,主要从事中高层大气动力学及无线电海洋遥感方向研究。E-mail:yuexc@whu.edu.cn

  • 中图分类号: P731.22

Comparative analysis of SWAN model and ERA-Interim data on significant wave height in the Taiwan Strait

  • 摘要: 有效波高是描述海浪的关键参数。欧洲中期天气预报中心(ECMWF)提供的ERA-Interim再分析数据提供了全球海浪的有效波高,本文选取该数据在台湾海峡2013年3月份的有效波高结果,分别与浮标观测数据以及海浪数值模式SWAN (Simulating Waves Nearshore)的数值模拟结果相对比,来分析其预报效果。结果显示:在浮标点,ERA-Interim数据和SWAN模拟浪高数据与浮标浪高数据的时间相关系数分别为0.94和0.98,ERA-Interim数据的浪高均值约为浮标的51%,为SWAN模拟数据的70%。在台湾海峡区域,ERA-Interim数据与SWAN模拟浪高之间的空间异常相关系数(ACC)月均值为0.51,时序ACC曲线显示,一般在海峡东北口风初起时刻ACC值最小,在风吹遍海峡并增长的过程中,ACC迅速增加,在风速达到最大值之后,ACC开始下降,但ERA-Interim数据与SWAN数值模拟结果在整个海峡区域的浪高最大值与最小值分布位置基本一致。综合分析,ERA-Interim数据能够反映台湾海峡区域此时间段的有效波高的时空变化趋势,在数值上有明显低估。
  • 图  1  计算区域网格及台湾海峡研究区域局部放大

    Fig.  1  The computational region grid and the partial enlarged detail of Taiwan Strait

    图  2  台湾海峡研究区域水深地形

    Fig.  2  Topography and depth of the study area in the Taiwan Strait

    图  3  浮标点处有效波高的SWAN模式模拟结果(蓝线)与浮标观测结果(点线)对比

    Fig.  3  Comparison of SWAN model simulation results (blue line) and buoy observation results (dotted line) of the significant wave height at the buoy point

    图  4  浮标点处有效波高的ERA-Interim数据(蓝线)和浮标数据(黑线)对比

    Fig.  4  Comparison of ERA-Interim reanalysis data (blue line) and buoy data (black line) of the significant wave height at the buoy point

    图  5  所选择的4个时刻台湾海峡区域SWAN模式数值模拟与ERA-Interim数据有效波高空间变化分布

    Fig.  5  The spatial variation distribution of significant wave height by the SWAN numerical simulation and the ERA-Interim data at the selected 4 moments in the Taiwan Strait

    图  6  模拟期间ERA-Interim浪高与SWAN模拟浪高之间空间异常相关系数的时序值

    Fig.  6  The anomaly correlation coefficient between ERA-Interim wave height and SWAN simulated wave height during simulation

    表  1  不同风场条件下SWAN数值模拟结果与浮标观测结果比较

    Tab.  1  Comparison of SWAN numerical simulation results and buoy observation results under different wind field conditions

    风场类型风速U
    范围/(m·s−1)
    相关系数二者差值 /m
    最大值均值RMS
    弱风0≤U≤50.900.600.150.18
    中风5<U≤120.931.290.340.46
    强风U>120.901.200.280.42
    下载: 导出CSV

    表  2  浮标点与周围4个ERA-Interim数据点有效波高对比

    Tab.  2  Comparison of the significant wave height between the buoy point and the surrounding 4 ERA-Interim data points

    数据点信息有效波高差值/m
    坐标水深/m最大值均值RMS
    23.750°N, 118.125°E32.422.130.720.95
    23.625°N, 118.125°E35.412.100.680.90
    23.625°N, 118.250°E42.902.010.630.83
    23.750°N, 118.250°E39.542.040.670.88
    下载: 导出CSV

    表  3  浮标点3种方式得到的有效波高月均值、最大值以及与CCMP风速相关系数的对比

    Tab.  3  Comparison of the significant wave height monthly averaged values, maximum values and correlation coefficients with the CCMP wind speed obtained by three methods

    浮标SWAN模式ERA-Interim
    均值/m1.551.300.88
    最大值/m4.873.982.63
    相关系数0.920.940.91
    下载: 导出CSV

    表  4  不同风场条件下浮标数据与ERA-Interim数据有效波高值比较

    Tab.  4  Comparison of significant wave height between buoy data and ERA-Interim data under different wind conditions

    风场类型风速U
    范围/(m·s−1
    相关系数二者差值/m
    最大值均值RMS
    弱风0≤U≤50.560.810.190.27
    中风5<U≤120.851.830.991.06
    强风U>120.882.001.251.35
    下载: 导出CSV
  • [1] 管长龙. 我国海浪理论及预报研究的回顾与展望[J]. 青岛海洋大学学报, 2000, 30(4): 549−556.

    Guan Changlong. A review of history and prospect for study of sea wave theory and its forecast in China[J]. Journal of Ocean University of Qingdao, 2000, 30(4): 549−556.
    [2] 刘金芳, 刘忠, 顾翼炎, 等. 台湾海峡水文要素特征分析[J]. 海洋预报, 2002, 19(3): 22−32. doi: 10.3969/j.issn.1003-0239.2002.03.003

    Liu Jinfang, Liu Zhong, Gu Yiyan, et al. Analysis of the hydrographic elements features in Taiwan Strait[J]. Marine Forecasts, 2002, 19(3): 22−32. doi: 10.3969/j.issn.1003-0239.2002.03.003
    [3] Chuang W S. A note on the driving mechanisms of current in the Taiwan Strait[J]. Journal of Oceanography, 1986, 42(5): 355−361. doi: 10.1007/BF02110430
    [4] Jan S, Sheu D D, Kuo H M. Water mass and throughflow transport variability in the Taiwan Strait[J]. Journal of Geophysical Research: Oceans, 2006, 111(C12): C12012. doi: 10.1029/2006JC003656
    [5] 姬厚德, 蓝尹余, 赵东波. SWAN在台湾海峡台风浪场数值模拟中的应用研究[J]. 水道港口, 2013, 34(2): 113−117. doi: 10.3969/j.issn.1005-8443.2013.02.007

    Ji Houde, Lan Yinyu, Zhao Dongbo. Application of SWAN in Taiwan Strait typhoon waves numerical simulation[J]. Journal of Waterway and Harbour, 2013, 34(2): 113−117. doi: 10.3969/j.issn.1005-8443.2013.02.007
    [6] 袁凯瑞, 商少平, 谢燕双, 等. 台湾海峡台风浪的数值模拟[J]. 厦门大学学报(自然科学版), 2014, 53(3): 413−417.

    Yuan Kairui, Shang Shaoping, Xie Yanshuang, et al. The simulation of typhoon waves in Taiwan Strait[J]. Journal of Xiamen University (Natural Science), 2014, 53(3): 413−417.
    [7] Li Chuan, Wu Xiongbin, Yue Xianchang, et al. Extraction of wind direction spreading factor from broad-beam high-frequency surface wave radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5123−5133. doi: 10.1109/TGRS.2017.2702394
    [8] 吴雄斌, 李伦, 李炎, 等. 高频地波雷达海面有效波高探测实验研究[J]. 海洋与湖沼, 2012, 43(2): 210−216. doi: 10.11693/hyhz201202002002

    Wu Xiongbin, Li Lun, Li Yan, et al. Experimental research on significant waveheight detecting with HFSWR OSMAR071[J]. Oceanologia et Limnologia Sinica, 2012, 43(2): 210−216. doi: 10.11693/hyhz201202002002
    [9] Wu Xiongbin, Yang Shaolin, Cheng Feng, et al. Ocean surface current detection by HF surface wave radar at the Eastern China Sea[J]. Chinese Journal of Geophysics, 2003, 46(3): 489−498. doi: 10.1002/cjg2.3366
    [10] 叶雨颖. 台湾海峡风浪场的数值模拟研究[D]. 厦门: 厦门大学, 2006.

    Ye Yuying. The numerical simulation of wind waves in Taiwan Strait[D]. Xiamen: Xiamen University, 2006.
    [11] 姬厚德. 台湾海峡及附近港湾的风浪场数值模拟研究[D]. 厦门: 厦门大学, 2007.

    Ji Houde. The numerical simulation of wind waves in Taiwan Strait and Harbors nearby[D]. Xiamen: Xiamen University, 2007.
    [12] 陈希, 沙文钰, 闵锦忠. 台湾岛邻近海域台风浪的模拟研究[J]. 海洋预报, 2002, 19(4): 1−10. doi: 10.3969/j.issn.1003-0239.2002.04.001

    Chen Xi, Sha Wenyu, Min Jinzhong. The simulation of typhoon waves around Taiwan Island[J]. Marine Forecasts, 2002, 19(4): 1−10. doi: 10.3969/j.issn.1003-0239.2002.04.001
    [13] 陈希, 闵锦忠, 李妍, 等. 台湾岛邻近海域台风浪模拟分析[J]. 气象科学, 2003, 23(1): 46−54. doi: 10.3969/j.issn.1009-0827.2003.01.006

    Chen Xi, Min Jinzhong. Li Yan, et al The simulation of typhoon waves around Taiwan Island[J]. Scientia Meteorologica Sinica, 2003, 23(1): 46−54. doi: 10.3969/j.issn.1009-0827.2003.01.006
    [14] 滕陈轲敏, 岳显昌, 吴雄斌, 等. 风场对SWAN模式在台湾海峡后报结果的影响[J]. 海洋学报, 2019, 41(5): 59−69.

    Teng Chenkemin, Yue Xianchang, Wu Xiongbin, et al. Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(5): 59−69.
    [15] Christakos K, Furevik B R, Aarnes O J, et al. The importance of wind forcing in fjord wave modelling[J]. Ocean Dynamics, 2020, 70(1): 57−75. doi: 10.1007/s10236-019-01323-w
    [16] 丁磊, 于博. SWAN模型中不同风拖曳力系数对风浪模拟的影响[J]. 海洋学报, 2017, 39(11): 14−23.

    Ding Lei, Yu Bo. Impact of wind drag coefficients on wave simulation using SWAN model[J]. Haiyang Xuebao, 2017, 39(11): 14−23.
    [17] Wang Zhifeng, Li Songtao, Hao Yan, et al. Estimation and prediction of typhoons and wave overtopping in Qingdao, China[J]. Journal of Ocean University of China, 2020, 19(5): 1017−1028. doi: 10.1007/s11802-020-4378-4
    [18] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553−597. doi: 10.1002/qj.828
    [19] Kumarl V S, Naseef T M. Performance of ERA-Interim wave data in the nearshore waters around India[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(6): 1257−1269. doi: 10.1175/JTECH-D-14-00153.1
    [20] Shanas P R, Kumar V S. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data[J]. Natural Hazards and Earth System Sciences, 2014, 14(5): 1371−1381. doi: 10.5194/nhess-14-1371-2014
    [21] 万勇, 张杰, 孟俊敏, 等. 基于ERA-Interim高分辨率数据的中国东海南海波浪能评估[J]. 太阳能学报, 2015, 36(5): 1259−1267. doi: 10.3969/j.issn.0254-0096.2015.05.036

    Wan Yong, Zhang Jie, Meng Junmin, et al. Wave energy assessment in the East China sea and South China Sea based on ERA-Interim high resolution data[J]. Acta Energiae Solaris Sinica, 2015, 36(5): 1259−1267. doi: 10.3969/j.issn.0254-0096.2015.05.036
    [22] 王小丹, 赵文静. 基于ERA-Interim再分析资料的南沙海域风、浪场特征分析[J]. 海洋预报, 2019, 36(2): 30−37. doi: 10.11737/j.issn.1003-0239.2019.02.004

    Wang Xiaodan, Zhao Wenjing. Characteristics analysis of wind and wave in the Nansha Aera based on ERA-Interim reanalysis data[J]. Marine Forecasts, 2019, 36(2): 30−37. doi: 10.11737/j.issn.1003-0239.2019.02.004
    [23] Islek F, Yuksel Y. Inter-comparison of long-term wave power potential in the Black Sea based on the SWAN wave model forced with two different wind fields[J]. Dynamics of Atmospheres and Oceans, 2021, 93: 101192. doi: 10.1016/j.dynatmoce.2020.101192
    [24] 陈雅雅, 邹仲水, 赵栋梁. 基于SWAN模式的台风浪数值模拟初步研究[J]. 海洋湖沼通报, 2017(6): 1−10.

    Chen Yaya, Zou Zhongshui, Zhao Dongliang. A preliminary study of typhoon wave based on numerical simulations using SWAN model[J]. Transactions of Oceanology and Limnology, 2017(6): 1−10.
    [25] 麻巨慧, 朱跃建, 王盘兴, 等. NCEP、ECMWF及CMC全球集合预报业务系统发展综述[J]. 大气科学学报, 2011, 34(3): 370−380. doi: 10.3969/j.issn.1674-7097.2011.03.015

    Ma Juhui, Zhu Yuejian, Wang Panxing, et al. A review on the developments of NCEP, ECMWF and CMC global ensemble forecast system[J]. Transactions of Atmospheric Sciences, 2011, 34(3): 370−380. doi: 10.3969/j.issn.1674-7097.2011.03.015
    [26] Booij N, Haagsma I J G, Holthuijsen L H, et al. SWAN cycle III version 41.31A users manual[M]. Delft, The Netherlands: Delft University of Technology, 2004: 115.
    [27] 潘番. 渤海海浪SWAN计算模式及波浪反射的研究[D]. 天津: 天津大学, 2013.

    Pan Fan. Research on calculation model and reflection simulation for wave in Bohai Sea by SWAN[D]. Tianjin: Tianjin University, 2013.
    [28] Yan Yixin, Xu Fumin, Mao Lihua. A new type numerical model for action balance equation in simulating nearshore waves[J]. Chinese Science Bulletin, 2001, 46(11): 963−968. doi: 10.1007/BF02900477
    [29] Du Jianting, Bolaños R, Larsén X G. The use of a wave boundary layer model in SWAN[J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 42−62. doi: 10.1002/2016JC012104
    [30] Group S S. Surface Water Modeling System (SMS)[EB/OL]. (2006–04–15)[2020–09–15]. https://doi.org/10.1002/0470848944.hsa288.
    [31] 薛立梅. SMS系统软件在水利工程中的应用[J]. 东北水利水电, 2010, 28(11): 63, 68.

    Xue Limei. Application of SMS system software in hydro project[J]. Water Resources & Hydropower of Northeast China, 2010, 28(11): 63, 68.
    [32] 张鹏, 陈晓玲, 陆建忠, 等. 基于CCMP卫星遥感海面风场数据的渤海风浪模拟研究[J]. 海洋通报, 2011, 30(3): 266−271. doi: 10.3969/j.issn.1001-6392.2011.03.005

    Zhang Peng, Chen Xiaoling, Lu Jianzhong, et al. Research on wave simulation of Bohai Sea based on the CCMP remotely sensed sea winds[J]. Marine Science Bulletin, 2011, 30(3): 266−271. doi: 10.3969/j.issn.1001-6392.2011.03.005
    [33] Huang Yong, Weisberg R H, Zheng Lianyuan, et al. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3916−3938. doi: 10.1002/jgrc.20283
    [34] 孟凡昌. 强海况下的波流相互作用研究[D]. 北京: 国家海洋环境预报中心, 2017.

    Meng Fanchang. Study on wave-current interaction under strong sea conditions[D]. Beijing: National Marine Environmental Forecasting Center, 2017.
    [35] 宗芳伊, 吴克俭. 基于近20年的SWAN模式海浪模拟结果的南海波浪能分布、变化研究[J]. 海洋湖沼通报, 2014(3): 1−12.

    Zong Fangyi, Wu Kejian. Research on distributions and variations of wave energy in South China Sea based on recent 20 years' wave simulation results using SWAN wave model[J]. Transactions of Oceanology and Limnology, 2014(3): 1−12.
    [36] 黄必桂. 渤海海浪的数值模拟和涌浪对风浪影响的研究[D]. 青岛: 中国海洋大学, 2009.

    Huang Bigui. Numerical simulation of waves in Bohai Sea and research on the influence of swells on wind waves[D]. Qingdao: Ocean University of China, 2009.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  390
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2021-04-09
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回