The enhanced construction method for intertidal terrain of offshore sandbanks by remote sensing
-
摘要: 水边线法是潮间带地形遥感反演的重要方法。针对常规水边线方法在应用于地形多变的岸外沙洲潮间带数字高程模型(DEM)构建中出现的水边线交叉和缺乏表现潮沟微地形特征的问题,本文提出了一种增强型地形遥感构建方法:首先通过潮位排序,筛选出具有正确高程变化趋势、空间分离的水边线;然后对筛选过程中水边线位置相近的影像组按像元计算改进的归一化差值水体指数并进行均值序列合成,提取出合成海陆边界线,二者共同构建出初始的潮间带DEM;进一步利用低潮期的潮沟边界线和中线生成潮沟DEM,通过潮沟镶嵌处理,最终获得可表达滩面微地形起伏的潮滩DEM。该方法在江苏岸外辐射沙洲中部核心区域的模拟应用表明,对比4条验证剖面的平均结果,高程平均绝对误差为0.43 m,均方根误差为0.54 m,相关系数(r)为0.75,模拟高程与验证高程在剖面起伏形态变化方面具有良好的一致性,同时模拟DEM的空间破碎度小,能够反映更多的细节地形特征。该方法可为利用多源遥感数据构建考虑微地形变化的高精度潮间带地形DEM提供新的思路。Abstract: The waterline method is an important method for remote sensing inversion of intertidal terrain. Aiming at the problems in the digital elevation model (DEM) construction with variable topography, which the waterlines intersect and lack of representation of micro-topography for the tidal creek in the conventional waterline method, an enhanced terrain remote sensing construction method was proposed in this paper. First, the waterlines with the correct trend of elevation change and spatial separation were selected through tidal level sorting. Second, the images group with similar waterlines position in the screening process were combined according to the mean of a sequence of the modified normalized difference water index values in each pixel, and the boundary line of land-sea was obtained. These two methods worked together to construct the initial intertidal DEM. Then, the tidal creek DEM was generated by using the boundary and centerline of the tidal creek in the low tide period. Through the mosaic processing, the tidal flat DEM that can express the undulating micro-topography of the beach surface was constructed. Comparing with the measured terrain, the results in the central core area of the radial sand ridges off the coast of Jiangsu showed that the mean absolute error of the 4 measured sections was 0.43 m, the root mean square error was 0.54 m, and the average correlation (r) was 0.75. The simulation results and the measured results were in good agreement with the changes in beach undulations. Furthermore, the spatial fragmentation of the simulated DEM was small and can reflect more detailed terrain features. This method can provide a new idea for constructing high-precision DEM of intertidal zone considering micro terrain changes by using multi-source remote sensing data.
-
Key words:
- intertidal zone /
- digital elevation model /
- remote sensing /
- waterline /
- image synthesis /
- tidal creek mosaic
-
图 4 各潮位站点在不同排序条件下影像成像时刻的潮位分布和线性拟合
a−c分别为以大丰港、弶港、洋口港为潮位基准站点的排序结果
Fig. 4 Tide level distribution and linear fitting of imaging time at various tide stations under different sequencing conditions
a−c are the tide level sequencing results by taking Dafeng Port, Jianggang Port, and Yangkou Port stations as the tidal level ranking benchmarks respectively
图 5 影像组HC-4的MNDWI序列合成与海陆边界线提取过程
a. 原始影像;b. MNDWI结果;c. 序列合成;d. 阈值分割;e. 5组合成影像提取的海陆边界线
Fig. 5 MNDWI sequence synthesis and sea-land boundary extraction of image group HC-4
a. Original images; b. images of MNDWI; c. sequential synthesis result; d. threshold segmentation; e. border lines extracted from 5 groups of synthetic images
表 1 不同排序基准下各站点的潮位变化拟合决定系数与斜率
Tab. 1 The coefficient of determination and slope for fitting tide level changes at different tide stations under different sequencing conditions
排序基准 大丰港站 弶港站 洋口港站 R2 斜率 R2 斜率 R2 斜率 大丰港站 0.96 –0.13 0.06 –0.02 0.70 –0.11 弶港站 0.01 –0.01 0.77 –0.08 0.31 –0.07 洋口港站 0.74 –0.11 0.32 –0.06 0.93 –0.13 表 2 各影像组中的影像与成像时刻潮位高度
Tab. 2 Images and their correspondent tide levels for each image group
影像组名称 成像日期 成像时间 潮位高度/m(国家1985高程) 大丰港 弶港 洋口港 HC-1 2017年10月31日 10:38:19 0.28 1.42 1.27 2018年7月28日 10:35:49 1.87 –0.76 1.18 2017年10月21日 10:37:09 1.56 –0.96 1.14 合成后 1.24 –0.10 1.20 HC-2 2018年11月10日 10:39:21 1.01 –1.51 0.31 2019年5月29日 10:35:51 –0.43 0.70 0.27 2017年12月21日 10:30:59 0.58 –1.67 –0.08 合成后 0.39 –0.83 0.17 HC-3 2019年1月24日 10:40:09 0.85 –1.89 –0.46 2018年4月19日 10:35:49 1.09 –1.82 –0.51 2018年4月9日 10:35:49 –1.22 –0.27 –0.58 2018年10月16日 10:36:59 –0.95 –1.15 –0.86 合成后 –0.06 –1.28 –0.60 HC-4 2018年10月31日 11:38:31 –1.22 –1.25 –1.42 2018年10月1日 10:35:51 –0.95 –1.39 –1.44 2018年6月3日 10:36:51 –0.43 –1.97 –1.46 2018年1月22日 10:30:46 –0.88 –1.86 –1.58 2018年1月9日 10:40:49 –1.86 –1.08 –1.58 合成后 –1.07 –1.51 –1.50 HC-5 2017年12月10日 10:40:59 –1.67 –1.39 –1.69 2017年12月25日 10:41:21 –1.52 –1.75 –1.70 2018年2月7日 10:30:38 –1.88 –1.15 –1.71 2019年2月26日 10:30:29 –1.91 –1.04 –1.72 2018年2月23日 10:30:32 –1.99 –1.02 –1.77 2018年2月23日 10:37:11 –1.96 –1.07 –1.79 合成后 –1.82 –1.24 –1.73 未参与合成的原始影像 2018年5月14日 10:35:51 1.69 1.32 2.50 2018年5月14日 10:29:49 1.71 1.17 2.44 2017年12月5日 10:41:01 1.31 –0.92 1.03 2018年11月25日 10:40:29 1.42 –1.09 0.80 2018年12月24日 10:30:40 1.32 –1.22 0.80 2017年12月20日 10:41:09 1.01 –1.24 0.66 2018年3月10日 10:35:39 –1.43 –0.40 –0.80 2018年2月8日 10:38:39 –1.72 –0.65 –1.21 2018年5月4日 10:35:51 –0.06 –1.97 –1.13 2018年7月17日 10:29:58 –0.65 –1.73 –2.12 2018年7月18日 10:35:49 –1.52 –1.75 –2.48 2019年6月8日 10:35:51 –1.12 –1.87 –2.31 -
[1] 龚政, 靳闯, 张长宽, 等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展, 2014, 25(6): 880−887.Gong Zheng, Jin Chuang, Zhang Changkuan, et al. Surface elevation variation of the Jiangsu mudflats: Field observation[J]. Advances in Water Science, 2014, 25(6): 880−887. [2] 计娜, 程和琴, 杨忠勇, 等. 近30年来长江口岸滩沉积物与地貌演变特征[J]. 地理学报, 2013, 68(7): 945−954.Ji Na, Cheng Heqin, Yang Zhongyong, et al. Sedimentary and morphological evolution of nearshore coast of Yangtze Estuary in the last 30 years[J]. Acta Geographica Sinica, 2013, 68(7): 945−954. [3] 冯曦, 易风, 曹海锦, 等. 南黄海辐射沙洲近岸海域波浪特性研究[J]. 海洋工程, 2018, 36(1): 62−73.Feng Xi, Yi Feng, Cao Haijin, et al. An observational study on wave characteristics at the Jiangsu Radial Sand Ridges in the South Yellow Sea of China[J]. The Ocean Engineering, 2018, 36(1): 62−73. [4] 谢富赋, 刘红玉, 李玉凤, 等. 基于极坐标定位的丹顶鹤多尺度越冬生境选择研究——以江苏盐城自然保护区为例[J]. 生态学报, 2018, 38(15): 5584−5594.Xie Fufu, Liu Hongyu, Li Yufeng, et al. Multi-scale overwintering habitat selection of red-crowned crane based on polar coordinate positioning at Yancheng Nature Reserve, Jiangsu Province, China[J]. Acta Ecologica Sinica, 2018, 38(15): 5584−5594. [5] 徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018, 38(3): 1148−1162.Xu Caiyao, Pu Lijie, Zhu Ming. Effect of reclamation activity on coastal ecological environment: Progress and perspectives[J]. Acta Ecologica Sinica, 2018, 38(3): 1148−1162. [6] 陈玮彤, 张东, 刘鑫, 等. 围填海对南通淤泥质海岸资源影响的综合评价研究[J]. 长江流域资源与环境, 2016, 25(1): 48−54.Chen Weitong, Zhang Dong, Liu Xin, et al. Comprehensive evaluation of the impact on coastal zone resources caused by reclamation in Nantong muddy coast[J]. Resources and Environment in the Yangtze Basin, 2016, 25(1): 48−54. [7] 张长宽, 陈欣迪. 大规模滩涂围垦影响下近海环境变化及其对策[J]. 河海大学学报(自然科学版), 2015, 43(5): 424−430.Zhang Changkuan, Chen Xindi. Offshore environmental changes and countermeasures in response to large-scale tidal flat reclamation[J]. Journal of Hohai University (Natural Sciences), 2015, 43(5): 424−430. [8] 马洪羽, 丁贤荣, 葛小平, 等. 辐射沙脊群潮滩地形遥感遥测构建[J]. 海洋学报, 2016, 38(3): 111−122.Ma Hongyu, Ding Xianrong, Ge Xiaoping, et al. Remote sensing and remote measuring approach to construct tidal flat terrain in the radial sand ridges[J]. Haiyang Xuebao, 2016, 38(3): 111−122. [9] 周良勇, 王薇薇, 高茂生, 等. 航空激光高程测量在黄河三角洲北部潮滩监测中的应用[J]. 地质通报, 2016, 35(10): 1661−1668.Zhou Liangyong, Wang Weiwei, Gao Maosheng, et al. Monitoring the tidal topography of the north Yellow River Delta with LIDAR data[J]. Geological Bulletin of China, 2016, 35(10): 1661−1668. [10] Wimmer C, Siegmund R, Schwabisch M, et al. Generation of high precision DEMs of the Wadden Sea with airborne inter-ferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2234−2245. doi: 10.1109/36.868881 [11] Mason D C, Davenport I J, Robinson G J, et al. Construction of an inter-tidal digital elevation model by the ‘Water-Line’ Method[J]. Geophysical Research Letters, 1995, 22(23): 3187−3190. doi: 10.1029/95GL03168 [12] Heygster G, Dannenberg J, Notholt J. Topographic mapping of the German tidal flats analyzing SAR images with the waterline method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1019−1030. doi: 10.1109/TGRS.2009.2031843 [13] Xu Zhen, Kim D J, Kim S H, et al. Estimation of seasonal topographic variation in tidal flats using waterline method: A case study in Gomso and Hampyeong Bay, South Korea[J]. Estuarine, Coastal and Shelf Science, 2016, 183: 213−220. doi: 10.1016/j.ecss.2016.10.026 [14] Wang Yongxing, Liu Yongxue, Jin Song, et al. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 27−43. doi: 10.1016/j.isprsjprs.2019.02.001 [15] Kang Yanyan, Ding Xianrong, Xu Fan, et al. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method[J]. Estuarine, Coastal and Shelf Science, 2017, 190: 11−22. doi: 10.1016/j.ecss.2017.03.024 [16] 郑宗生. 长江口淤泥质潮滩高程遥感定量反演及冲淤演变分析[D]. 上海: 华东师范大学, 2007.Zheng Zongsheng. Retrieval and analysis of elevation at mudflat using remote sensing[D]. Shanghai: East China Normal University, 2007. [17] Liu Yongxue, Li Manchun, Cheng Liang, et al. Topographic mapping of offshore sandbank tidal flats using the waterline detection method: A case study on the Dongsha Sandbank of Jiangsu radial tidal sand ridges, China[J]. Marine Geodesy, 2012, 35(4): 362−378. doi: 10.1080/01490419.2012.699501 [18] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195: 153−169. doi: 10.1016/j.rse.2017.04.009 [19] 丁贤荣, 康彦彦, 葛小平, 等. 辐射沙脊群条子泥动力地貌演变遥感分析[J]. 河海大学学报(自然科学版), 2011, 39(2): 231−236.Ding Xianrong, Kang Yanyan, Ge Xiaoping, et al. Tidal flat evolution analysis using remote sensing on Tiaozini flat of the radial sand ridges[J]. Journal of Hohai University (Natural Sciences), 2011, 39(2): 231−236. [20] 魏振宁, 邢前国, 郭瑞宏, 等. 基于遥感的2000−2015年南黄海紫菜养殖空间分布变化研究[J]. 海洋技术学报, 2018, 37(4): 17-22.Wei Zhenning, Xing Qianguo, Guo Ruihong, et al. Study on the spatial distribution variation of Porphyra aquaculture in the Southern Yellow Sea during the period 2000−2015 retrieved by satellite remote sensing[J]. Journal of Ocean Technology, 2018, 37(4): 17-22. [21] 祁昌军, 廖琦琛, 董浩平, 等. 江苏辐射沙洲潮间带风电场对海洋水动力场的影响分析[J]. 环境污染与防治, 2011, 33(8): 69−74, 80.Qi Changjun, Liao Qichen, Dong Haoping, et al. Analysis of the impact of wind farm in inter-tidal zone on marine hydrodynamic field of radial sandy ridge in Jiangsu[J]. Environmental Pollution & Control, 2011, 33(8): 69−74, 80. [22] 丁贤荣, 康彦彦, 茅志兵, 等. 南黄海辐射沙脊群特大潮差分析[J]. 海洋学报, 2014, 36(11): 12−20.Ding Xianrong, Kang Yanyan, Mao Zhibing, et al. Analysis of largest tidal range in radial sand ridges southern Yellow Sea[J]. Haiyang Xuebao, 2014, 36(11): 12−20. [23] 黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛: 中国海洋大学出版社, 2005.Huang Zuke, Huang Lei. Tidal Theory and Calculation[M]. Qingdao: China Ocean University Press, 2005. [24] Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937. [25] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589−595.Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589−595. [26] 张鹏, 左继翔, 高超, 等. 基于GIS的地形要素插值验证及三维建模研究[J]. 青岛理工大学学报, 2019, 40(1): 34−39.Zhang Peng, Zuo Jixiang, Gao Chao, et al. Research on terrain element interpolation verification and 3D modeling based on GIS[J]. Journal of Qingdao University of Technology, 2019, 40(1): 34−39. [27] 王春, 汤国安, 刘学军, 等. 特征嵌入式数字高程模型研究[J]. 武汉大学学报·信息科学版, 2009, 34(10): 1149−1154.Wang Chun, Tang Guoan, Liu Xuejun, et al. The model of terrain features preserved in Grid DEM[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1149−1154.