留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同储藏气压下含气土细观结构表征与重构研究

郭珍琦 刘涛 吴琛 苏秀婷 李三鹏

郭珍琦,刘涛,吴琛,等. 不同储藏气压下含气土细观结构表征与重构研究[J]. 海洋学报,2021,43(11):96–104 doi: 10.12284/hyxb2021154
引用本文: 郭珍琦,刘涛,吴琛,等. 不同储藏气压下含气土细观结构表征与重构研究[J]. 海洋学报,2021,43(11):96–104 doi: 10.12284/hyxb2021154
Guo Zhenqi,Liu Tao,Wu Chen, et al. Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures[J]. Haiyang Xuebao,2021, 43(11):96–104 doi: 10.12284/hyxb2021154
Citation: Guo Zhenqi,Liu Tao,Wu Chen, et al. Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures[J]. Haiyang Xuebao,2021, 43(11):96–104 doi: 10.12284/hyxb2021154

不同储藏气压下含气土细观结构表征与重构研究

doi: 10.12284/hyxb2021154
基金项目: 国家自然科学基金(U2006213);中央高校基本科研业务费专项(201962011);青岛海洋科学与技术国家试点实验室海洋地质过程与环境功能实验室开放基金(MGQNLM-KF201804);山东省重点研发计划(41702320)
详细信息
    作者简介:

    郭珍琦(1997-),男,贵州省六盘水市人,主要从事含气土结构表征与声学性质反演研究。E-mail:gzqquincy@163.com

    通讯作者:

    刘涛,男,教授,主要从事海洋地质工程与环境、海底原位探测技术研究。E-mail:ltmilan@ouc.edu.cn

  • 中图分类号: P618.130.2

Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures

  • 摘要: 含气土的储藏气压与细观结构表征是研究浅层气地质灾害的关键因素。利用工业CT扫描测试系统,采用立式旋转扫描,微焦点X射线光源的位置固定,样品沿XY平面方向匀速旋转1周,设定旋转步长为0.3°/s,对反应釜内含气样品注气加压至2 MPa、4 MPa、6 MPa,充分考虑样品成像最佳分辨率、最佳探测范围等因素的影响。结果表明,CT扫描获得的切片图像与重构图像具有良好的实验效果;加压注气到2 MPa时,小气泡灰度值增加;加压到6 MPa时气体整体灰度值增加明显;增压过程中气泡数量随着气泡半径增加而减少;加压注气过程会导致固−液−气三相物质局部变化,表现为孔隙气、孔隙水的体积变化幅度整体大于土骨架,微观局部位置会有较大的升高或降低。当不同位置的气体含量上升且占据主导地位时,会驱动着孔隙水的减少与土骨架的移动。
  • 图  1  制样所用的土样、甲烷和反应釜

    Fig.  1  Soil sample, methane and reactor used for sample preparation

    图  2  实验样品颗粒级配曲线

    Fig.  2  Particle grading curve of experimental sample

    图  3  X-CT图像切片与三维样品预重构

    Fig.  3  X-CT image slice and 3D sample pre-reconstruction

    图  4  2 MPa压力下含气土CT图像切片

    Fig.  4  CT image slices of gas bearing sediments under 2 MPa pressure

    图  5  不同注气压力下的土在X-Z平面CT图像比较

    Fig.  5  Comparison of X-Z plane CT images of sediments under different gas injection pressures

    图  6  不同气藏压力下的样品切片灰度值比较(高度:2.17 mm)

    Fig.  6  Comparison of grey degree of sample slices under different gas reservoir pressures (height: 2.17 mm)

    图  7  气藏压力值与气泡体积分数非线性拟合曲线

    Fig.  7  Non-linear fitting curve of gas reservoir pressure values to bubble volume

    图  8  4 MPa下含气土固、液、气三相分布

    Fig.  8  Solid-liquid-gas distribution of gas-bearing soils at 4 MPa

    图  9  不同等效半径范围的气泡数量与气泡体积分布

    Fig.  9  Distribution of bubble number and bubble volume in different equivalent radius range

    图  10  不同气藏压力下气泡数量与等效半径的关系

    Fig.  10  The relationship between bubble number and equivalent radius under different gas reservoir pressures

    图  11  含气土三相性示意图

    Fig.  11  Three phase diagram of gas-bearing soils

    图  12  0~2 MPa的表观含水率与孔隙率分布曲线

    Fig.  12  Apparent water content and porosity distribution curve from 0 MPa to 2 MPa

    图  13  0~6 MPa的固、液、气含量变化值比较

    Fig.  13  Comparison of changes of solid, liquid and gas contents between 0‒6 MPa

    表  1  实验砂土基本物理性质指标

    Tab.  1  Basic physical properties of experimental sand

    粒径/mm比重/(g·cm−3含水率/%孔隙度/%饱和度/%
    <0.72.62404588.9
    下载: 导出CSV

    表  2  不同气藏压力下表观含气量

    Tab.  2  Apparent gas content under different gas reservoir pressures

    气藏压力值/MPa气泡数量/个气泡体积分数/%
    011 4994.93
    216 3914.65
    410 1644.97
    611 9665.66
    下载: 导出CSV
  • [1] Fleischer P, Orsi T, Richardson M, et al. Distribution of free gas in marine sediments: a global overview[J]. Geo-Marine Letters, 2001, 21(2): 103−122. doi: 10.1007/s003670100072
    [2] 李萍, 杜军, 刘乐军, 等. 我国近海海底浅层气分布特征[J]. 中国地质灾害与防治学报, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015

    Li Ping, Du Jun, Liu Lejun, et al. Distribution characteristics of the shallow gas in Chinese offshore seabed[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015
    [3] Robb G B N, Leighton T G, Dix J K, et al. Measuring bubble populations in gassy marine sediments: a review[C]//Proceedings of the Institute of Acoustics Spring Conference 2006: Futures in Acoustics: Today’s Research-Tomorrow’s Careers. UK: University of Southampton, 2006.
    [4] Gardner T. Modeling signal loss in surficial marine sediments containing occluded gas[J]. Journal of the Acoustical Society of America, 2003, 113(3): 1368−1378. doi: 10.1121/1.1542731
    [5] Jackson D R, Richardson M D. High-Frequency Seafloor Acoustics[M]. New York: Springer, 2007.
    [6] Anderson A L, Abegg F, Hawkins J A, et al. Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay[J]. Continental Shelf Research, 1998, 18(14/15): 1807−1838.
    [7] Warner G S, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653−660. doi: 10.2136/sssaj1989.03615995005300030001x
    [8] Sham W K. The undrained shear strength of soils containing large gas bubbles[D]. Belfast: Queen’s University of Belfast, 1989.
    [9] Wheeler S J. The undrained shear strength of soils containing large gas bubbles[J]. Geotechnique, 1988, 38(3): 399−413. doi: 10.1680/geot.1988.38.3.399
    [10] Sultan N, De Gennaro V, Puech A. Mechanical behaviour of gas-charged marine plastic sediments[J]. Geotechnique, 2012, 62(9): 751−766. doi: 10.1680/geot.12.OG.002
    [11] Best A I, Tuffin M D J, Dix J K, et al. Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): B08101.
    [12] Kim G Y, Narantsetseg B, Kim J W, et al. Physical properties and micro-and macro-structures of gassy sediments in the inner shelf of SE Korea[J]. Quaternary International, 2014, 344: 170−180. doi: 10.1016/j.quaint.2014.01.049
    [13] Hong Y, Wang L Z, Ng C W W, et al. Effect of initial pore pressure on undrained shear behaviour of fine-grained gassy soil[J]. Canadian Geotechnical Journal, 2017, 54(11): 1592−1600. doi: 10.1139/cgj-2017-0015
    [14] Thomas S, Hill A J, Clare M A, et al. Understanding engineering challenges posed by natural hydrocarbon infiltration and the development of authigenic carbonate[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2011.
    [15] Duffy S M, Wheeler S J, Bennell J D. Shear modulus of kaolin containing methane bubbles[J]. Journal of Geotechnical Engineering, 1994, 120(5): 781−796. doi: 10.1061/(ASCE)0733-9410(1994)120:5(781)
    [16] 张巍, 梁小龙, 唐心煜, 等. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683−689. doi: 10.11779/CJGE201704013

    Zhang Wei, Liang Xiaolong, Tang Xinyu, et al. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683−689. doi: 10.11779/CJGE201704013
    [17] Liu L, Wilkinson J, Koca K, et al. The role of sediment structure in gas bubble storage and release[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(7): 1992−2005. doi: 10.1002/2016JG003456
    [18] Zhang Fengshou, Zhu Haiyan, Zhou Hangguo, et al. Discrete-element-method/computational-fluid-dynamics coupling simulation of proppant embedment and fracture conductivity after hydraulic fracturing[J]. SPE Journal, 2017, 22(2): 632−644. doi: 10.2118/185172-PA
    [19] 邢磊, 焦静娟, 刘雪芹, 等. 渤海海域浅层气分布及地震特征分析[J]. 中国海洋大学学报, 2017, 47(11): 70−78.

    Xing Lei, Jiao Jingjuan, Liu Xueqin, et al. Distribution and seismic reflection characteristics of shallow gas in Bohai Sea[J]. Periodical of Ocean University of China, 2017, 47(11): 70−78.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  88
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回