A review on Antarctic sea ice change and its climate effects
-
摘要: 南极海冰是全球气候系统的重要组成部分。不同于北极海冰的快速减少,近40年来,南极海冰范围在2014年前是缓慢增加、后是突变减少。单一的大尺度大气环流因素无法解释南极海冰的长期变化趋势,海洋−大气相互作用对海冰的耦合影响还未得到充分研究。受南极海冰厚度遥感观测和数值模拟能力所限,现有数据仍无法准确量化全球变化背景下南极海冰的厚度和体积变化;目前南极海冰变化的气候效应还未充分明确。当前国内外对南极海冰研究的不足迫切要求发展长期可靠的南极海冰厚度数据,以突破南极海冰体积变化研究的难题,同时应综合考虑多气候模态和海气系统耦合的作用,研究南极海冰变化的机制及其气候效应。Abstract: Antarctic sea ice plays an important role in the global climate system. In contrast to the rapid decrease in Arctic sea ice extent, Antarctic sea ice extent exhibits a gradually increasing trend before 2014, followed by an abrupt decline in the last four decades. A single large-scale atmospheric circulation cannot fully explain the long-term trend of Antarctic sea ice, and the coupling influence of ocean-atmosphere interactions has not been sufficiently investigated. Limited by the capabilities of remote sensing and numerical simulation, the Antarctic sea ice thickness and volume variations in the context of global change cannot be quantified precisely with currently available sea ice thickness and volume data. Moreover, the climate effects of Antarctic sea ice change require further investigation. Hence it is strongly urgent to develop a long-term and reliable Antarctic sea ice thickness data set to quantify the Antarctic sea ice volume change. Meanwhile, the influences of multi-climate modes and ocean-atmosphere coupling system on the Antarctic sea ice changes should be considered comprehensively.
-
Key words:
- Antarctic /
- sea ice extent /
- sea ice thickness /
- climate effects
-
图 1 1979–2020年南、北极海冰范围异常的时间序列(相比1981–2010年气候态异常平均而言)
数据来源:美国国家冰雪数据中心,细线表示月平均的海冰范围异常,粗线表示12年滑动平均的海冰范围异常(据文献[22]绘制)
Fig. 1 Time series of Arctic and Antarctic sea ice extent anomaly from 1979 to 2019 compared with the climatology from 1981 to 2010
The data is from National Snow and Ice Data Center. Thin lines represent monthly average sea ice extent anomalies and thick lines represent the 12-year running mean of sea ice extent anomalies. This figure is modified based on reference [22]
表 1 现有的主要南极海冰厚度现场观测数据
Tab. 1 Available Antarctic sea ice thickness field observations
序号 数据名称 数据来源 数据时段 覆盖区域 1 AWI-ULS 向上仰视声呐 1990–2010 威德尔海 2 ASPeCt 船载走航观测 1980–2004 南大洋 3 ISPOL 机载电磁感应 2004.11–2005.01 威德尔海(66~68°S) 4 WWOS 机载电磁感应 2006.09–2006.10 威德尔海(60~65°S) 5 ANTXXIX/6&ANTXXIX/7 机载电磁感应 2013.06– 2013.10 威德尔海 6 IceBridge 积雪雷达、机载地形测绘仪 2009–2018 威德尔海 表 2 现有的主要南极海冰厚度卫星遥感数据
Tab. 2 Available Antarctic sea ice thickness remote sensing data
序号 数据名称 数据来源 数据时段 覆盖区域 数据网址 1 ERS-1/2 ERS-1/ERS-2卫星 1991–2011年 南大洋 https://earth.esa.int/eogateway/missions/ers 2 SICCI Envisat 和CryoSat-2卫星 2002–2017年 南大洋 http://esa-cci.nersc.no/ 3 ICESat-1 ICESat-1卫星 2003–2009年 南大洋 https://icesat.gsfc.nasa.gov/icesat/ 4 SMOS SMOS卫星 2010年至今 南大洋 私人通信 5 ICESat-2 ICESat-2卫星 2018年至今 南大洋 https://icesat-2.gsfc.nasa.gov/ -
[1] Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738 [2] Kitade Y, Shimada K, Tamura T, et al. Antarctic Bottom Water production from the Vincennes Bay polynya, East Antarctica[J]. Geophysical Research Letters, 2014, 41(10): 3528−3534. doi: 10.1002/2014GL059971 [3] Dutrieux P, De Rydt J, Jenkins A, et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability[J]. Science, 2014, 343(6167): 174−178. doi: 10.1126/science.1244341 [4] Holland P R, Jenkins A, Holland D M. Ice and ocean processes in the Bellingshausen Sea, Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C5): C05020. [5] Bracegirdle T J, Stephenson D B, Turner J, et al. The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation[J]. Geophysical Research Letters, 2015, 42(24): 10832−10839. doi: 10.1002/2015GL067055 [6] Massom R A, Scambos T A, Bennetts L G, et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell[J]. Nature, 2018, 558(7710): 383−389. doi: 10.1038/s41586-018-0212-1 [7] Delille B, Vancoppenolle M, Geilfus N X, et al. Southern Ocean CO2 sink: The contribution of the sea ice[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 6340−6355. doi: 10.1002/2014JC009941 [8] Massom R A, Stammerjohn S E. Antarctic sea ice change and variability-physical and ecological implications[J]. Polar Science, 2010, 4(2): 149−186. doi: 10.1016/j.polar.2010.05.001 [9] Steinberg D K, Ruck K E, Gleiber M R, et al. Long-term (1993−2013) changes in macrozooplankton off the Western Antarctic Peninsula[J]. Deep–Sea Research Part I: Oceanographic Research Papers, 2015, 101: 54−70. doi: 10.1016/j.dsr.2015.02.009 [10] Wang Zhaomin, Turner J, Sun Bo, et al. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions[J]. Scientific Reports, 2014, 4(1): 5317. [11] Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979−2010[J]. The Cryosphere, 2012, 6(4): 871−880. doi: 10.5194/tc-6-871-2012 [12] Comiso J C, Gersten R A, Stock L V, et al. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature[J]. Journal of Climate, 2017, 30(6): 2251−2267. doi: 10.1175/JCLI-D-16-0408.1 [13] Yuan Naiming, Ding Minghu, Ludescher J, et al. Increase of the Antarctic sea ice extent is highly significant only in the Ross Sea[J]. Scientific Reports, 2017, 7(1): 41096. doi: 10.1038/srep41096 [14] Maksym T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes[J]. Annual Review of Marine Science, 2019, 11: 187−213. doi: 10.1146/annurev-marine-010816-060610 [15] Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018 [16] Eayrs C, Li X, Raphael M N, et al. Rapid decline in Antarctic sea ice in recent years hints at future change[J]. Nature Geoscience, 2021, 14: 460−464. doi: https://doi.org/10.1038/s41561-021-00768-3 [17] Stuecker M F, Bitz C M, Armour K C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season[J]. Geophysical Research Letters, 2017, 44(17): 9008−9019. doi: 10.1002/2017GL074691 [18] Meehl G A, Arblaster J M, Chung C T Y, et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016[J]. Nature Communications, 2019, 10(1): 14. doi: 10.1038/s41467-018-07865-9 [19] Hobbs W R, Massom R, Stammerjohn S, et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings[J]. Global and Planetary Change, 2016, 143: 228−250. doi: 10.1016/j.gloplacha.2016.06.008 [20] Stammerjohn S, Massom R, Rind D, et al. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison[J]. Geophysical Research Letters, 2012, 39(6): L06501. [21] Eayrs C, Holland D, Francis D, et al. Understanding the seasonal cycle of Antarctic sea ice extent in the context of longer-term variability[J]. Reviews of Geophysics, 2019, 57(3): 1037−1064. doi: 10.1029/2018RG000631 [22] Turner J, Comiso J. Solve Antarctica’s sea-ice puzzle[J]. Nature, 2017, 547(7663): 275−277. doi: 10.1038/547275a [23] Goelzer H, Huybrechts P, Raper S C B, et al. Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM[J]. Environmental Research Letters, 2012, 7(4): 045401. doi: 10.1088/1748-9326/7/4/045401 [24] Shepherd A, Wingham D. Recent sea-level contributions of the Antarctic and Greenland ice sheets[J]. Science, 2007, 315(5818): 1529−1532. doi: 10.1126/science.1136776 [25] Trusel L D, Frey K E, Das S B, et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios[J]. Nature Geoscience, 2015, 8(12): 927−932. doi: 10.1038/ngeo2563 [26] Willatt R C, Giles K A, Laxon S W, et al. Field investigations of Ku-band radar penetration into snow cover on Antarctic sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 365−372. doi: 10.1109/TGRS.2009.2028237 [27] Kwok R, Kacimi S. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2[J]. The Cryosphere, 2018, 12(8): 2789−2801. doi: 10.5194/tc-12-2789-2018 [28] Shu Q, Song Z, Qiao F. Assessment of sea ice simulations in the CMIP5 models[J]. The Cryosphere, 2015, 9(1): 399−409. doi: 10.5194/tc-9-399-2015 [29] Shu Qi, Wang Qiang, Song Zhenya, et al. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5[J]. Geophysical Research Letters, 2020, 47(9): e2020GL087965. [30] Massonnet F, Mathiot P, Fichefet T, et al. A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980−2008 using data assimilation[J]. Ocean Modelling, 2013, 64: 67−75. doi: 10.1016/j.ocemod.2013.01.003 [31] Shi Qian, Yang Qinghua, Mu Longjiang, et al. Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea[J]. The Cryosphere, 2021, 15(1): 31−47. doi: 10.5194/tc-15-31-2021 [32] Stroeve J C, Jenouvrier S, Campbell G G, et al. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels[J]. The Cryosphere, 2016, 10(4): 1823−1843. doi: 10.5194/tc-10-1823-2016 [33] Screen J A. Sudden increase in Antarctic sea ice: Fact or artifact?[J]. Geophysical Research Letters, 2011, 38(13): L13702. [34] Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015 [35] Lavergne T, Sørensen A M, Kern S, et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records[J]. The Cryosphere, 2019, 13(1): 49−78. doi: 10.5194/tc-13-49-2019 [36] Cavalieri D J, Parkinson C L, Gloersen P, et al. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets[J]. Journal of Geophysical Research: Oceans, 1999, 104(C7): 15803−15814. doi: 10.1029/1999JC900081 [37] Comiso J C. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations[J]. Journal of Geophysical Research: Oceans, 1986, 91(C1): 975−994. doi: 10.1029/JC091iC01p00975 [38] Comiso J C, Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S07. [39] Peng G, Meier W N, Scott D J, et al. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring[J]. Earth System Science Data, 2013, 5(2): 311−318. doi: 10.5194/essd-5-311-2013 [40] Liu Jiping, Curry J A, Martinson D G. Interpretation of recent Antarctic sea ice variability[J]. Geophysical Research Letters, 2004, 31(2): L02205. [41] Yu Leijiang, Zhang Zhanhai, Zhou Mingyu, et al. Interpretation of recent trends in Antarctic sea ice concentration[J]. Journal of Applied Remote Sensing, 2011, 5(1): 053557. doi: 10.1117/1.3643691 [42] Ferreira D, Marshall J, Bitz C M, et al. Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem[J]. Journal of Climate, 2015, 28(3): 1206−1226. doi: 10.1175/JCLI-D-14-00313.1 [43] Turner J, Hosking J S, Marshall G J, et al. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low[J]. Climate Dynamics, 2016, 46(7): 2391−2402. [44] Kohyama T, Hartmann D L. Antarctic sea ice response to weather and climate modes of variability[J]. Journal of Climate, 2016, 29(2): 721−741. doi: 10.1175/JCLI-D-15-0301.1 [45] Meehl G A, Arblaster J M, Bitz C M, et al. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability[J]. Nature Geoscience, 2016, 9(8): 590−595. doi: 10.1038/ngeo2751 [46] Li Xichen, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505(7484): 538−542. doi: 10.1038/nature12945 [47] Jin D, Kirtman B P. Why the Southern Hemisphere ENSO responses lead ENSO[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D23): D23101. doi: 10.1029/2009JD012657 [48] Raphael M N, Hobbs W. The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons[J]. Geophysical Research Letters, 2014, 41(14): 5037−5045. doi: 10.1002/2014GL060365 [49] Wang Guomin, Hendon H H, Arblaster J M, et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016[J]. Nature Communications, 2019, 10(1): 13. [50] Lefebvre W, Goosse H, Timmermann R, et al. Influence of the Southern Annular Mode on the sea ice-ocean system[J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09005. [51] Yuan Xiaojun. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms[J]. Antarctic Science, 2004, 16(4): 415−425. doi: 10.1017/S0954102004002238 [52] Ciasto L M, Simpkins G R, England M H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate[J]. Journal of Climate, 2015, 28(1): 56−65. doi: 10.1175/JCLI-D-14-00438.1 [53] Raphael M N. The influence of atmospheric zonal wave three on Antarctic sea ice variability[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12): D12112. doi: 10.1029/2006JD007852 [54] Lefebvre W, Goosse H. An analysis of the atmospheric processes driving the large-scale winter sea ice variability in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02004. [55] Nuncio M, Yuan Xiaojun. The influence of the Indian Ocean dipole on Antarctic sea ice[J]. Journal of Climate, 2015, 28(7): 2682−2690. doi: 10.1175/JCLI-D-14-00390.1 [56] Renwick J A, Kohout A, Dean S. Atmospheric forcing of Antarctic sea ice on intraseasonal time scales[J]. Journal of Climate, 2012, 25(17): 5962−5975. doi: 10.1175/JCLI-D-11-00423.1 [57] Henderson G R, Barrett B S, Lois A, et al. Time-lagged response of the Antarctic and high-latitude atmosphere to tropical MJO convection[J]. Monthly Weather Review, 2018, 146(4): 1219−1231. doi: 10.1175/MWR-D-17-0224.1 [58] Martinson D G, Iannuzzi R A. Antarctic ocean-ice interaction: Implications from ocean bulk property distributions in the Weddell Gyre[J]. Antarctic Sea Ice: Physical Processes, Interactions and Variability, 1998, 74: 243−271. [59] Zhang Jinlun. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions[J]. Journal of Climate, 2007, 20(11): 2515−2529. doi: 10.1175/JCLI4136.1 [60] Goosse H, Zunz V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback[J]. The Cryosphere, 2014, 8(2): 453−470. doi: 10.5194/tc-8-453-2014 [61] Lecomte O, Goosse H, Fichefet T, et al. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea[J]. Nature Communications, 2017, 8(1): 258. doi: 10.1038/s41467-017-00347-4 [62] Bintanja R, Van Oldenborgh G J, Drijfhout S S, et al. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion[J]. Nature Geoscience, 2013, 6(5): 376−379. doi: 10.1038/ngeo1767 [63] Liu Jiping, Curry J A. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 14987−14992. doi: 10.1073/pnas.1003336107 [64] Thompson D W J, Solomon S. Interpretation of recent Southern Hemisphere climate change[J]. Science, 2002, 296(5569): 895−899. doi: 10.1126/science.1069270 [65] Sigmond M, Fyfe J C. Has the ozone hole contributed to increased Antarctic sea ice extent?[J]. Geophysical Research Letters, 2010, 37(18): L18502. [66] Fogt R L, Zbacnik E A. Sensitivity of the Amundsen Sea low to stratospheric ozone depletion[J]. Journal of Climate, 2014, 27(24): 9383−9400. doi: 10.1175/JCLI-D-13-00657.1 [67] Christidis N, Stott P A. Changes in the geopotential height at 500 hPa under the influence of external climatic forcings[J]. Geophysical Research Letters, 2015, 42(24): 10798−10806. doi: 10.1002/2015GL066669 [68] Xia Yan, Hu Yongyun, Liu Jiping, et al. Stratospheric ozone-induced cloud radiative effects on Antarctic sea ice[J]. Advances in Atmospheric Sciences, 2020, 37(5): 505−514. doi: 10.1007/s00376-019-8251-6 [69] Landrum L L, Holland M M, Raphael M N, et al. Stratospheric ozone depletion: An unlikely driver of the regional trends in Antarctic sea ice in austral fall in the late twentieth century[J]. Geophysical Research Letters, 2017, 44(21): 11062−11070. [70] Marshall J, Scott J R, Armour K C, et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing[J]. Climate Dynamics, 2015, 44(7/8): 2287−2299. [71] Marshall J, Armour K C, Scott J R, et al. The ocean's role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130040. doi: 10.1098/rsta.2013.0040 [72] Kirkman IV C H, Bitz C M. The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming[J]. Journal of Climate, 2011, 24(9): 2224−2237. doi: 10.1175/2010JCLI3625.1 [73] Crosta X, Etourneau J, Orme L C, et al. Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years[J]. Nature Geoscience, 2021, 14(3): 156−160. doi: 10.1038/s41561-021-00697-1 [74] 季青, 庞小平, 许苏清, 等. 极地海冰厚度探测方法及其应用研究综述[J]. 极地研究, 2016, 28(4): 431−441.Ji Qing, Pang Xiaoping, Xu Suqing, et al. Review of technology and application research on polar sea ice thickness detection[J]. Chinese Journal of Polar Research, 2016, 28(4): 431−441. [75] Worby A P, Geiger C A, Paget M J, et al. Thickness distribution of Antarctic sea ice[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05S92. [76] Williams G, Maksym T, Wilkinson J, et al. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles[J]. Nature Geoscience, 2015, 8(1): 61−67. doi: 10.1038/ngeo2299 [77] Worby A P, Bush G M, Allison I. Seasonal development of the sea-ice thickness distribution in East Antarctica: Measurements from upward-looking sonar[J]. Annals of Glaciology, 2001, 33: 177−180. doi: 10.3189/172756401781818167 [78] Behrendt A, Dierking W, Fahrbach E, et al. Sea ice draft in the Weddell Sea, measured by upward looking sonars[J]. Earth System Science Data, 2013, 5(1): 209−226. doi: 10.5194/essd-5-209-2013 [79] Wang Xianwei, Jiang Weixu, Xie Hongjie, et al. Decadal variations of sea ice thickness in the Amundsen-Bellingshausen and Weddell seas retrieved from ICESat and IceBridge laser altimetry, 2003−2017[J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2020JC016077. [80] Lei Ruibo, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C2): C02006. [81] 杨清华, 刘骥平, 张林, 等. 南极沿岸固定冰观测与研究述评[J]. 水科学进展, 2013, 24(5): 741−749.Yang Qinghua, Liu Jiping, Zhang Lin, et al. Review of Antarctic landfast sea ice observations[J]. Advances in Water Science, 2013, 24(5): 741−749. [82] 赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127. [83] Kwok R, Sulsky D. Arctic Ocean sea ice thickness and kinematics: Satellite retrievals and modeling[J]. Oceanography, 2010, 23(4): 134−143. doi: 10.5670/oceanog.2010.11 [84] Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region[J]. Nature, 2003, 425(6961): 947−950. doi: 10.1038/nature02050 [85] Giles K A, Laxon S W, Worby A P. Antarctic sea ice elevation from satellite radar altimetry[J]. Geophysical Research Letters, 2008, 35(3): L03503. [86] Yi Donghui, Zwally H J, Robbins J W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003−2009)[J]. Annals of Glaciology, 2011, 52(57): 43−51. doi: 10.3189/172756411795931480 [87] Kurtz N T, Markus T. Satellite observations of Antarctic sea ice thickness and volume[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08025. [88] Kern S, Ozsoy-Çiçek B, Worby A P. Antarctic sea-ice thickness retrieval from ICESat: Inter-comparison of different approaches[J]. Remote Sensing, 2016, 8(7): 538. doi: 10.3390/rs8070538 [89] Hendricks S. Sea ice climate change initiative: Phase 2. D3.4 Product User Guide (PUG)[R]. Paris: Eurpean Space Agency, 2017. [90] Nandan V, Geldsetzer T, Yackel J, et al. Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements[J]. Geophysical Research Letters, 2017, 44(20): 10419−10426. doi: 10.1002/2017GL074506 [91] Tian-Kunze X, Kaleschke L, Maaß N, et al. SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification[J]. The Cryosphere, 2014, 8(3): 997−1018. doi: 10.5194/tc-8-997-2014 [92] Kwok R, Cunningham G, Markus T, et al. ATLAS/ICESat-2 L3A sea ice height, version 1[R]. Boulder: NSIDC (National Snow and Ice Data Center), 2019: 20. [93] Wang Jinfei, Min Chao, Ricker R, et al. A comparison between Envisat and ICESat sea ice thickness in the Antarctic[J]. The Cryosphere Discussions, 2020, doi: 10.5194/TC-2020-48. [94] Buehner M, Caya A, Pogson L, et al. A new environment Canada regional ice analysis system[J]. Atmosphere-Ocean, 2013, 51(1): 18−34. doi: 10.1080/07055900.2012.747171 [95] Yang Qinghua, Losa S N, Losch M, et al. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6680−6692. doi: 10.1002/2014JC009963 [96] Liu Jiping, Chen Zhiqiang, Hu Yongyun, et al. Towards reliable Arctic sea ice prediction using multivariate data assimilation[J]. Science Bulletin, 2019, 64(1): 63−72. doi: 10.1016/j.scib.2018.11.018 [97] Mu Longjiang, Yang Qinghua, Losch M, et al. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(711): 529−538. doi: 10.1002/qj.3225 [98] Zhang Jinlun, Rothrock D A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates[J]. Monthly Weather Review, 2003, 131(5): 845−861. doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 [99] Verdy A, Mazloff M R. A data assimilating model for estimating Southern Ocean biogeochemistry[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 6968−6988. doi: 10.1002/2016JC012650 [100] Holland P R, Bruneau N, Enright C, et al. Modeled trends in Antarctic sea ice thickness[J]. Journal of Climate, 2014, 27(10): 3784−3801. doi: 10.1175/JCLI-D-13-00301.1 [101] Wu Qigang, Zhang Xiangdong. Observed evidence of an impact of the Antarctic sea ice dipole on the Antarctic Oscillation[J]. Journal of Climate, 2011, 24(16): 4508−4518. doi: 10.1175/2011JCLI3965.1 [102] Raphael M N, Hobbs W, Wainer I. The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer[J]. Climate Dynamics, 2011, 36(7/8): 1403−1417. [103] Lachlan-Cope T. Role of sea ice in forcing the winter climate of Antarctica in a global climate model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D3): D03110. [104] Kidston J, Taschetto A S, Thompson D W J, et al. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream[J]. Geophysical Research Letters, 2011, 38(15): L15804. [105] Bader J, Flügge M, Kvamstø N G, et al. Atmospheric winter response to a projected future Antarctic sea-ice reduction: A dynamical analysis[J]. Climate Dynamics, 2013, 40(11/12): 2707−2718. [106] Parise C K, Pezzi L P, Hodges K I, et al. The influence of sea ice dynamics on the climate sensitivity and memory to increased Antarctic sea ice[J]. Journal of Climate, 2015, 28(24): 9642−9668. doi: 10.1175/JCLI-D-14-00748.1 [107] Smith D M, Dunstone N J, Scaife A A, et al. Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean atmosphere coupling and the background state[J]. Journal of Climate, 2017, 30(12): 4547−4565. doi: 10.1175/JCLI-D-16-0564.1 [108] England M, Polvani L, Sun Lantao. Contrasting the Antarctic and Arctic atmospheric responses to projected sea ice loss in the late twenty-first century[J]. Journal of Climate, 2018, 31(16): 6353−6370. doi: 10.1175/JCLI-D-17-0666.1 [109] Ayres H C, Screen J A. Multimodel analysis of the atmospheric response to Antarctic sea ice loss at quadrupled CO2[J]. Geophysical Research Letters, 2019, 46(16): 9861−9869. doi: 10.1029/2019GL083653 [110] Azhar S S A, Chenoli S N, Samah A A, et al. The linkages between Antarctic sea ice extent and Indian summer monsoon rainfall[J]. Polar Science, 2020, 25: 100537. doi: 10.1016/j.polar.2020.100537 [111] Fogwill C J, Turney C S M, Menviel L, et al. Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic cold reversal[J]. Nature Geoscience, 2020, 13(7): 489−497. doi: 10.1038/s41561-020-0587-0 [112] Gupta M, Follows M J, Lauderdale J M. The effect of Antarctic sea ice on Southern Ocean carbon outgassing: Capping versus light attenuation[J]. Global Biogeochemical Cycles, 2020, 34(8): e2019GB006489. [113] Shadwick E H, De Meo O A, Schroeter S, et al. Sea ice suppression of CO2 outgassing in the West Antarctic Peninsula: Implications for the evolving Southern Ocean carbon sink[J]. Geophysical Research Letters, 2021, 48(11): e2020GL091835. [114] Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends[J]. Nature, 2016, 537(7618): 89−92. doi: 10.1038/nature19101 [115] Nadeau L P, Ferrari R, Jansen M F. Antarctic sea ice control on the depth of North Atlantic deep water[J]. Journal of Climate, 2019, 32(9): 2537−2551. doi: 10.1175/JCLI-D-18-0519.1 [116] Luo H, Yang Q, Mu L, et al. DASSO: a data assimilation system for the Southern Ocean that utilizes both sea-ice concentration and thickness observations[J]. Journal of Glaciology, 2021: 1−6.