留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第十二届国际海洋生物技术大会反映的新进展

秦松 王寅初 张卫 陈松林 隋正红 张博 包永波

秦松,王寅初,张卫,等. 第十二届国际海洋生物技术大会反映的新进展[J]. 海洋学报,2021,43(9):1–7 doi: 10.12284/hyxb2021148
引用本文: 秦松,王寅初,张卫,等. 第十二届国际海洋生物技术大会反映的新进展[J]. 海洋学报,2021,43(9):1–7 doi: 10.12284/hyxb2021148
Qin Song,Wang Yinchu,Zhang Wei, et al. Recent advances reflected in the 12th International Marine Biotechnology Conference[J]. Haiyang Xuebao,2021, 43(9):1–7 doi: 10.12284/hyxb2021148
Citation: Qin Song,Wang Yinchu,Zhang Wei, et al. Recent advances reflected in the 12th International Marine Biotechnology Conference[J]. Haiyang Xuebao,2021, 43(9):1–7 doi: 10.12284/hyxb2021148

第十二届国际海洋生物技术大会反映的新进展

doi: 10.12284/hyxb2021148
基金项目: 国家自然科学基金(41676091)
详细信息
    作者简介:

    秦松(1968-),研究员,山东省曲阜市人,主要从事分子海藻学研究。E-mail:sqin@yic.ac.cn

  • 中图分类号: Q81

Recent advances reflected in the 12th International Marine Biotechnology Conference

  • 摘要: 海洋生物技术是规模化生产和利用海洋生物资源获取海洋生物产品和服务的系统工程技术。自1989年日本东京第一届国际海洋生物技术会议以来,国际海洋生物技术在促进海水养殖业健康可持续发展、开发海洋生物制品、保护海洋环境、保护海洋生物多样性以及建设“和谐海洋”等领域得到迅猛发展,不仅促进了传统海洋生物产业的转型升级,还催生了包括海洋天然药物、海洋生物材料等许多新的产业生长点。第十二届国际海洋生物技术会议于2019年9月9−13日在日本静冈召开,会议以“下一代的海洋生物技术”为主题,旨在全球范围内交流海洋生物技术研究和开发的最新进展,强化一个国际层面的“政府−学术−产业”之间的交流与合作平台。这次会议最大的特点是把青年科学家、企业家和政策制定者推向了大会交流的一线。本文针对本次会议反映的新进展,提出我国未来5~10年特别值得关注的重点方向,建议把青年人才特别是学术、工程和产业融合型人才的培养放到最重要的位置,及时布局下一代海洋生物技术的原始创新和新兴产业孵化的战略制高点。
  • [1] IMBA Committee. What is the IMBC?[EB/OL]. [2021−03−01]. http://theimba.org/what-we-do.
    [2] Ajith N, Arumugam S, Parthasarathy S, et al. Global distribution of microplastics and its impact on marine environment-a review[J]. Environmental Science and Pollution Research, 2020, 27(21): 25970−25986. doi: 10.1007/s11356-020-09015-5
    [3] Okuyama T, Yokoi S, Takeuchi H. Molecular basis of social competence in medaka fish[J]. Development, Growth & Differentiation, 2017, 59(4): 211−218.
    [4] Bambino K, Chu J. Zebrafish in toxicology and environmental health[J]. Current Topics in Developmental Biology, 2017, 124: 331−367.
    [5] Zhan Tianzuo, Rindtorff N, Betge J, et al. CRISPR/Cas9 for cancer research and therapy[J]. Seminars in Cancer Biology, 2019, 55: 106−119. doi: 10.1016/j.semcancer.2018.04.001
    [6] Kraemer W J, Ratamess N A, Hymer W C, et al. Growth Hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise[J]. Frontiers in Endocrinology, 2020, 11: 33. doi: 10.3389/fendo.2020.00033
    [7] Iwasaki M, Akiba Y, Kaunitz J D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system[J]. F1000Research, 2019, 8: 1629. doi: 10.12688/f1000research.18039.1
    [8] Mancinelli G, Chainho P, Cilenti L, et al. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies[J]. Marine Pollution Bulletin, 2017, 119(1): 5−11. doi: 10.1016/j.marpolbul.2017.02.050
    [9] Venter L, Loots D T, Mienie L J, et al. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics[J]. Metabolomics, 2018, 14(4): 49. doi: 10.1007/s11306-018-1346-8
    [10] Vartoukian S R, Palmer R M, Wade W G. Strategies for culture of ‘unculturable’ bacteria[J]. FEMS Microbiology Letters, 2010, 309(1): 1−7.
    [11] Lloyd K G, Steen A D, Ladau J, et al. Phylogenetically novel uncultured microbial cells dominate earth microbiomes[J]. Msystems, 2018, 3(5): e00055−18.
    [12] Khalifa S A M, Elias N, Farag M A, et al. Marine natural products: a source of novel anticancer drugs[J]. Marine Drugs, 2019, 17(9): 491. doi: 10.3390/md17090491
    [13] Barzkar N, Jahromi S T, Poorsaheli H B, et al. Metabolites from marine microorganisms, micro, and macroalgae: immense scope for pharmacology[J]. Marine Drugs, 2019, 17(8): 464. doi: 10.3390/md17080464
    [14] Guenther C M, Lenihan H S, Grant L E, et al. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests[J]. PLoS One, 2012, 7(11): e49396. doi: 10.1371/journal.pone.0049396
    [15] Binnewerg B, Schubert M, Voronkina A, et al. Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge[J]. Materials Science and Engineering: C, 2020, 109: 110566. doi: 10.1016/j.msec.2019.110566
    [16] Al-Saari N, Amada E, Matsumura Y, et al. Understanding the NaCl-dependent behavior of hydrogen production of a marine bacterium, Vibrio tritonius[J]. PeerJ, 2019, 7: e6769. doi: 10.7717/peerj.6769
    [17] Do Nascimento A S F, Serna S, Beloqui A, et al. Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein[J]. Glycobiology, 2015, 25(6): 607−616. doi: 10.1093/glycob/cwv002
    [18] Johnson M D, Price N N, Smith J E. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae[J]. PeerJ, 2014, 2: e411. doi: 10.7717/peerj.411
    [19] Gimmler A, Korn R, De Vargas C, et al. The Tara oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates[J]. Scientific Reports, 2016, 6: 33555. doi: 10.1038/srep33555
    [20] UNESCO. Goal 14: Conserve and sustainably use the oceans, seas and marine resources[EB/OL]. [2021−03−01]. https://www.un.org/sustainabledevelopment/oceans/.
    [21] Karger E J, Scholz A H. DSI, the nagoya protocol, and stakeholders’concerns[J]. Trends in Biotechnology, 2021, 39(2): 110−112. doi: 10.1016/j.tibtech.2020.09.008
  • 加载中
计量
  • 文章访问数:  329
  • HTML全文浏览量:  87
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-06-07
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-09-25

目录

    /

    返回文章
    返回