留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于海冰密集度的消退起始时间判别方法改进研究与应用

杨毅 聂红涛 董春明 魏皓

杨毅,聂红涛,董春明,等. 基于海冰密集度的消退起始时间判别方法改进研究与应用[J]. 海洋学报,2021,43(7):152–161 doi: 10.12284/hyxb2021145
引用本文: 杨毅,聂红涛,董春明,等. 基于海冰密集度的消退起始时间判别方法改进研究与应用[J]. 海洋学报,2021,43(7):152–161 doi: 10.12284/hyxb2021145
Yang Yi,Nie Hongtao,Dong Chunming, et al. Improved estimation method of retreat onset dates based on sea ice concentration[J]. Haiyang Xuebao,2021, 43(7):152–161 doi: 10.12284/hyxb2021145
Citation: Yang Yi,Nie Hongtao,Dong Chunming, et al. Improved estimation method of retreat onset dates based on sea ice concentration[J]. Haiyang Xuebao,2021, 43(7):152–161 doi: 10.12284/hyxb2021145

基于海冰密集度的消退起始时间判别方法改进研究与应用

doi: 10.12284/hyxb2021145
基金项目: 国家自然科学基金重点项目(41630969);国家重点研发计划(2016YFC1401401)
详细信息
    作者简介:

    杨毅(1997-),男,黑龙江省双城市人,主要从事海洋海冰动力学方面研究。E-mail:yangy27@tju.edu.cn

    通讯作者:

    聂红涛,副教授,主要从事海洋环境动力学方面研究。 E-mail:htnie@tju.edu.cn

  • 中图分类号: P731.15

Improved estimation method of retreat onset dates based on sea ice concentration

  • 摘要: 海冰融化过程以正反馈的形式影响着海洋的热量吸收,对北极生态环境的变化和经济活动的开展起着重要作用。基于1979–2018年北冰洋逐日海冰密集度数据,本文综合考虑不同海域海冰冰况等因素,对北冰洋边缘海海冰消退起始时间的判别方法进行了改进。通过不同的方案对比分析表明,改进后的方法能够反映不同海域、不同年份冰情的变化;并且可消除一些天气扰动现象的干扰,避免过早地判别消退起始时间。应用本方法分析发现北冰洋各边缘海消退起始时间存在提前的趋势,与融化起始时间的提前趋势较为一致。但是不同海域提前程度存在明显差异,喀拉海和楚科奇海提前消退的趋势最强,达到了9 d/(10 a),而东西伯利亚海消退提前趋势最弱,只有4 d/(10 a),区域间的差异逐渐增大。海冰消退起始时间存在显著的年际差异,各边缘海的标准差均在15 d左右,近10年中消退最早与最晚之间的差值最大可达50 d,出现在波弗特海。
  • 图  1  研究区域

    不同的颜色区分了北冰洋内各子区域的界限

    Fig.  1  Study areas

    Different colors distinguish the boundaries of subregions in the Arctic Ocean

    图  2  1979–2018年喀拉海消退起始时间判别结果

    Fig.  2  Estimated results of retreat onset dates in the Kara Sea during 1979–2018

    图  3  2008年、2012年喀拉海空间平均海冰密集度时间序列

    Fig.  3  Time series of spatial averaged sea ice concentration in the Kara Sea in 2008 and 2012

    图  4  2017年3–4月喀拉海海冰密集度空间分布

    Fig.  4  Spatial distributions of sea ice concentration in the Kara Sea during March and April 2017

    图  5  2017年喀拉海空间平均海冰密集度时间序列

    Fig.  5  Time series of spatial averaged sea ice concentration in the Kara Sea in 2017

    图  6  1979–2017年AHRA与SICA判别的消退起始时间结果对比

    时间从1月1日起算

    Fig.  6  Annual retreat onset dates estimated by AHRA and SICA during 1979–2017

    It starts on January 1st

    图  7  1996年东西伯利亚海空间平均海冰密集度时间序列

    Fig.  7  Time series of spatial averaged sea ice concentration in the East Siberian Sea in 1996

    图  8  1979–1988年及2009–2018年各海域消退起始时间平均值与标准差

    Fig.  8  Mean and standard deviation of retreat onset dates in different seas during 1979–1988 and 2009–2018

    表  1  1979−2017年SICA判别的消退起始时间与AHRA方法的平均值与趋势对比

    Tab.  1  Mean and trend differences of retreat onset dates estimated by SICA and AHRA during 1979−2017

    海域平均值/d趋势/(d·(10 a)−1
    AHRASICAAHRASICA
    楚科奇海137±13147±15–8*–9*
    东西伯利亚海148±14165±16–9*–4*
    拉普捷夫海143±12153±18–7*–8*
    喀拉海126±14140±16–9*–9*
    波弗特海148±10157±17–7*–7*
    注:*表示变化趋势通过95%置信度检查。时间从1月1日起算。
    下载: 导出CSV
  • [1] Belchansky G I, Douglas D C, Platonov N G. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001[J]. Journal of Climate, 2004, 17(1): 67−80. doi: 10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
    [2] Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2015, 9(1): 269−283. doi: 10.5194/tc-9-269-2015
    [3] Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
    [4] 赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985−995.

    Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985−995.
    [5] Overland J E, Wood K R, Wang M Y. Warm Arctic-cold continents: Climate impacts of the newly open Arctic sea[J]. Polar Research, 2011, 30(1): 15787. doi: 10.3402/polar.v30i0.15787
    [6] 黄季夏, 张天媛, 曹云锋, 等. 北极海冰消融情景下东北航道通航性能演变分析[J]. 地理学报, 2021, 76(5): 1051−1064. doi: 10.11821/dlxb202105001

    Huang Jixia, Zhang Tianyuan, Cao Yunfeng, et al. The evolution of navigation performance of Northeast Passage under the scenario of Arctic sea ice melting[J]. Acta Geographica Sinica, 2021, 76(5): 1051−1064. doi: 10.11821/dlxb202105001
    [7] Lei Ruibo, Tian-Kunze X, Leppäranta M, et al. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982–2009[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 5470−5486. doi: 10.1002/2016JC011831
    [8] Curry J A, Schramm J L, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [9] Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001. doi: 10.1088/1748-9326/aade56
    [10] Stroeve J C, Crawford A D, Stammerjohn S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic[J]. Geophysical Research Letters, 2016, 43(12): 6332−6340. doi: 10.1002/2016GL069314
    [11] Drobot S D, Anderson M R. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D20): 24033−24049. doi: 10.1029/2000JD000171
    [12] Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12024. doi: 10.1029/2009JC005436
    [13] Anderson M R. Determination of a melt-onset date for Arctic sea-ice regions using passive-microwave data[J]. Annals of Glaciology, 1997, 25: 382−387. doi: 10.3189/S0260305500014324
    [14] Bliss A C, Miller J A, Meier W N. Comparison of passive microwave-derived early melt onset records on Arctic sea ice[J]. Remote Sensing, 2017, 9(3): 199. doi: 10.3390/rs9030199
    [15] 朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25−33.

    Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Haiyang Xuebao, 2007, 29(2): 25−33.
    [16] 马靖凯, 陶树豪, 杜凌, 等. 北极太平洋扇区海冰融冻期的年代际变化[J]. 气候变化研究快报, 2019, 8(3): 302−311. doi: 10.12677/CCRL.2019.83034

    Ma Jingkai, Tao Shuhao, Du Ling, et al. Decadal variation of sea ice melting-frozen season in the Pacific sector of the Arctic[J]. Climate Change Research Letters, 2019, 8(3): 302−311. doi: 10.12677/CCRL.2019.83034
    [17] Onarheim I H, Eldevik T, Smedsrud L H, et al. Seasonal and regional manifestation of Arctic sea ice loss[J]. Journal of Climate, 2018, 31(12): 4917−4932. doi: 10.1175/JCLI-D-17-0427.1
    [18] Meier W N, Fetterer F, Savoie M, et al. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3[Z]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2019.
    [19] Comiso J C, Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S07.
    [20] Ogi M, Rigor I G, McPhee M G, et al. Summer retreat of Arctic sea ice: Role of summer winds[J]. Geophysical Research Letters, 2008, 35(24): L24701. doi: 10.1029/2008GL035672
    [21] Bliss A C, Anderson M R. Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012[J]. The Cryosphere, 2014, 8(6): 2089−2100. doi: 10.5194/tc-8-2089-2014
    [22] Bliss A C, Anderson M R. Daily area of snow melt onset on Arctic sea ice from passive microwave satellite observations 1979–2012[J]. Remote Sensing, 2014, 6(11): 11283−11314. doi: 10.3390/rs61111283
    [23] Steele M, Bliss A C, Peng G, et al. Arctic Sea Ice Seasonal Change and Melt/Freeze Climate Indicators from Satellite Data, Version 1[Z]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2018.
    [24] El Naggar S, Garrity C, Ramseier R O. The modelling of sea ice melt-water ponds for the high Arctic using an airborne line scan camera, and applied to the Satellite Special Sensor Microwave/Imager (SSM/I)[J]. International Journal of Remote Sensing, 1998, 19(12): 2373−2394. doi: 10.1080/014311698214785
    [25] Maksym T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes[J]. Annual Review of Marine Science, 2019, 11: 187−213. doi: 10.1146/annurev-marine-010816-060610
    [26] 朱大勇, 赵进平, 史久新. 2003年与1999年楚科奇海海冰的差异及其发生原因[J]. 极地研究, 2005, 17(1): 11−22.

    Zhu Dayong, Zhao Jinping, Shi Jiuxin. Differences of sea ice distribution in Chukchi Sea and their dynamic mechanism in 1999 and 2003[J]. Chinese Journal of Polar Research, 2005, 17(1): 11−22.
    [27] Kapsch M L, Skific N, Graversen R G, et al. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns[J]. Climate Dynamics, 2019, 52(3): 2497−2512.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  93
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-06-01
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回