留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地球系统模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验

张钰婷 沈浙奇 伍艳玲

张钰婷,沈浙奇,伍艳玲. 基于地球系统模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验[J]. 海洋学报,2021,43(10):137–148 doi: 10.12284/hyxb2021139
引用本文: 张钰婷,沈浙奇,伍艳玲. 基于地球系统模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验[J]. 海洋学报,2021,43(10):137–148 doi: 10.12284/hyxb2021139
Zhang Yuting,Shen Zheqi,Wu Yanling. Data assimilation experiments using localized particle filter and ensemble Kalman filter with community earth system model[J]. Haiyang Xuebao,2021, 43(10):137–148 doi: 10.12284/hyxb2021139
Citation: Zhang Yuting,Shen Zheqi,Wu Yanling. Data assimilation experiments using localized particle filter and ensemble Kalman filter with community earth system model[J]. Haiyang Xuebao,2021, 43(10):137–148 doi: 10.12284/hyxb2021139

基于地球系统模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验

doi: 10.12284/hyxb2021139
基金项目: 国家重点研发计划“海洋环境安全保障”重点专项(2016YFC1401701);自然资源部第二海洋研究所基本科研业务费专项(QNYC1903);国家自然科学基金(41606012,41690124,41805066,41806032)
详细信息
    作者简介:

    张钰婷(1996-),女,浙江省余姚市人,主要从事耦合模式资料同化研究。E-mail:zyt_ocean@163.com

    通讯作者:

    沈浙奇(1984-)男,浙江省杭州市人,副教授,主要从事耦合资料同化系统研发,资料同化方法和目标观测方法研究。E-mail:zqshen@sio.org.cn

  • 中图分类号: P456.7

Data assimilation experiments using localized particle filter and ensemble Kalman filter with community earth system model

  • 摘要: 粒子滤波器(PF)是一种非常具有应用前景的非线性资料同化方法。但由于其算法本身存在的粒子退化问题,目前尚未被广泛地应用于大型地球物理模式。目前主流的集合同化系统仍然倾向于使用集合卡尔曼滤波器(EnKF)及其衍生方法。一种新近被提出的局地化粒子滤波器(LPF)在经典的粒子滤波器算法中引入局地化技术,可以使用较小的计算成本有效地避免退化问题,具有非常大的业务应用潜力。本文在全耦合的通用地球系统模式中开展了LPF和EnKF的同化实验,同化资料为模拟的卫星海表温度资料。着重考察了不同局地化参数对两种方法的不同影响,对比了局地化粒子滤波器与集合卡尔曼滤波器的同化效果差异。比较的结果表明,LPF的同化效果对于局地化参数的选择非常敏感,在使用最优局地化参数的条件下,LPF能达到与EnKF相当甚至优于后者的同化效果,并具有较大的改进空间。
  • 图  1  观测系统模拟试验流程图设计

    Fig.  1  Flow chart design of observation system simulation experiment

    图  2  不同垂向局地化方案EAKF实验中区域平均(60°S~60°N,环地球)垂向均方根误差

    Fig.  2  Regional mean (60°S−60°N, ring the earth) root mean square error in EAKF experiments with different vertical localization schemes

    图  3  不同局地化参数EAKF实验中区域平均(60°S~60°N,环地球)的均方根误差时间序列

    a. 海表温度;b. 海表盐度;c. 海表高度;d. 200 m的温度;e. 200 m的盐度

    Fig.  3  RMSE time series of regional mean (60°S−60°N, ring the earth) in EAKF experiments with different local parameters

    a. Sea surface temperature; b. sea surface salinity; c. sea surface height; d. temperature at 200 m; e. salinity of 200 m

    图  4  海表温度相关系数

    a−f. 相对于(0°,180°)位置处海表温度相关系数;g−l. 相对于(20°S,120°W)位置处海表温度相关系数;m−r. 相对于(20°S,60°E)位置处海表温度相关系数;s−x. 相对于(20°N,40°W)位置处海表温度相关系数;a, g, m, s. 局地化参数为0.05时海表温度有效相关系数;b, h, n, t. 局地化参数为0.1时海表温度有效相关系数;c, i, o, u. 局地化参数为0.2时海表温度有效相关系数;d, j, p, v.局地化参数为0.3时海表温度有效相关系数;e, k, q, w. 无局地化时海表温度样本相关系数;f, l, r, x. HadiSST资料海表温度分析相关系数。空白区域代表相关系数小于0的区域

    Fig.  4  Correlation coefficient of sea surface temperature

    a−f. Relative to (0°N, 180°W); g−l. relative to (20°S, 120°W); m−r. relative to (20°S, 60°E); s−x. relative to (20°N, 40°W). a, g, m, s. Effective correlation coefficient of sea surface temperature when local parameter is 0.05; b, h, n, t. effective correlation coefficient of sea surface temperature when the local parameter is 0.1; c, i, o, u. effective correlation coefficient of sea surface temperature when the local parameter is 0.2; d, j, p, v. effective correlation coefficient of sea surface temperature when the local parameter is 0.3; e, k, q, w. sample correlation coefficient of sea surface temperature without localization; f, l, r, x. analytical correlation coefficient of sea surface temperature. The areas in which correlation coefficients are smaller than 0 are blanked

    图  5  不同垂向局地化方案LPF实验中区域平均(60°S~60°N,环地球)垂向均方根误差

    Fig.  5  Regional mean (60°S−60°N, ring the earth) root mean square error in LPF experiments with different vertical localization schemes

    图  6  不同局地化参数LPF实验中区域平均(60°S~60°N,环地球)垂向均方根误差

    Fig.  6  Regional mean vertical root mean square error (60°S−60°N, ring the earth) in LPF experiments with different local parameters

    图  7  不同局地化参数LPF实验中区域平均(60°S−60°N,环地球)均方根误差时间序列

    Fig.  7  Regional mean (60°S−60°N, ring the earth) root mean square error time series in the experiments of LPF with different local parameters

    图  8  最优局地化参数EAKF、LPF对比实验中区域平均(60°S~60°N,环地球)垂向均方根误差

    Fig.  8  Regional mean (60°S−60°N, ring the earth) vertical root mean square error in the experiments of EAKF and LPF with best local parameters

    图  9  最优局地化参数EAKF、LPF实验均方根误差之差空间分布

    Fig.  9  Spatial distribution of the difference between the root mean square error of the EAKF and LPF experiments

    表  1  实验列表

    Tab.  1  Experimental list

    实验名称同化方法ν/(m·rad−1c/rad
    EAKF垂向局地化
    方案实验
    Kc0.1v1000EAKF1 0000.1
    Kc0.1v15001 5000.1
    Kc0.1v20002 0000.1
    EAKF局地化参数实验Kc0.1vinfEAKF$ {\infty } $0.1
    Kc0.05vinf$ {\infty } $0.05
    Kc0.1vinf$ {\infty } $0.1
    Kc0.2vinf$ {\infty } $0.2
    Kc0.3vinf$ {\infty } $0.3
    LPF垂向局地化
    方案实验
    Pc0.1v500LPF5000.1
    Pc0.1v10001 0000.1
    Pc0.1v15001 5000.1
    LPF局地化参数实验Pc0.1vinfLPF$ {\infty } $0.1
    Pc0.05v20002 0000.05
    Pc0.1v10001 0000.1
    Pc0.2v5005000.2
    控制实验FREERUN无同化
    下载: 导出CSV

    表  2  SST相关系数虚假相关占比

    Tab.  2  Proportion of false correlation in SST correlation coefficient

    虚假相关占比/%
    位置局地化参数c/rad
    0.050.10.20.3无局地化
    (0°,180°)0.003 40.000 93.699 614.947 4264.448 6
    (20°S,120°W)0.014 40.004 00.556 41.110 1381.896 4
    (20°S,60°E)0.013 90.004 30.059 31.045 0258.742 8
    (20°N,40°W)0.011 00.006 30.191 71.565 5250.448 1
    平均0.010 70.003 91.126 84.667 0288.884 0
    下载: 导出CSV

    表  3  最优局地化参数EAKF、LPF不同区域平均均方根误差(RMSE)、同化影响(IOA)对比

    Tab.  3  Comparison table of mean root mean square error (RMSE) and influence of Assimilation (IOA) of EAKF and LPF in different regions

    a.最优EAKF与LPF全球海洋不同区域海表温度RMSE及IOA对比表(后6个月平均)
    区域FREERUNEAKFLPF
    RMSE/℃RMSE/℃IOA/%RMSE/℃IOA/%
    全球1.1610.23779.590.20282.60
    太平洋1.1790.21881.510.18983.97
    大西洋1.1830.25778.280.21781.66
    印度洋1.0380.25175.820.20480.35
    b.最优EAKF与LPF全球海洋不同区域海表盐度RMSE及IOA对比表(后6个月平均)
    区域FREERUNEAKFLPF
    RMSERMSEIOA/%RMSEIOA/%
    全球0.3530.29815.580.29317.00
    太平洋0.3820.31218.320.31417.80
    大西洋0.3430.28616.620.26722.16
    印度洋0.2900.2851.720.2832.41
    c.最优EAKF与LPF全球海洋不同区域海表高度RMSE及IOA对比表(后6个月平均)
    区域FREERUNEAKFLPF
    RMSE/cmRMSE/cmIOA/%RMSE/cmIOA/%
    全球6.254.3530.404.7324.32
    太平洋7.465.3528.285.7722.65
    大西洋4.542.9734.583.4025.11
    印度洋5.253.4334.673.7428.76
    下载: 导出CSV
  • [1] 李宏, 许建平. 资料同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011, 30(4): 463−472. doi: 10.3969/j.issn.1001-6392.2011.04.018

    Li Hong, Xu Jianping. Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin, 2011, 30(4): 463−472. doi: 10.3969/j.issn.1001-6392.2011.04.018
    [2] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 10143−10162. doi: 10.1029/94JC00572
    [3] van Leeuwen P J. Particle filtering in geophysical systems[J]. Monthly Weather Review, 2009, 137(12): 4089−4114. doi: 10.1175/2009MWR2835.1
    [4] Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884−2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
    [5] Zhang S, Harrison M J, Rosati A, et al. System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies[J]. Monthly Weather Review, 2007, 135(10): 3541−3564. doi: 10.1175/MWR3466.1
    [6] Le Gland F, Monbet V, Tran V D. Large sample asymptotics for the ensemble Kalman filter[M]//Crisan D. The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 2011: 598−634.
    [7] Shen Zheqi, Zhang Xiangming, Tang Youmin. Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework[J]. Acta Oceanologica Sinica, 2016, 35(3): 69−78. doi: 10.1007/s13131-015-0757-x
    [8] Penny S G, Miyoshi T. A local particle filter for high-dimensional geophysical systems[J]. Nonlinear Processes in Geophysics, 2016, 23(6): 391−405. doi: 10.5194/npg-23-391-2016
    [9] Farchi A, Bocquet M. Review article: Comparison of local particle filters and new implementations[J]. Nonlinear Processes in Geophysics, 2018, 25(4): 765−807. doi: 10.5194/npg-25-765-2018
    [10] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197−208. doi: 10.1023/A:1008935410038
    [11] Zhu Mengbin, van Leeuwen P J, Amezcua J. Implicit equal-weights particle filter[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(698): 1904−1919. doi: 10.1002/qj.2784
    [12] Shen Zheqi, Tang Youmin. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(1): 50−66. doi: 10.1002/2014MS000373
    [13] Poterjoy J. A localized particle filter for high-dimensional nonlinear systems[J]. Monthly Weather Review, 2016, 144(1): 59−76. doi: 10.1175/MWR-D-15-0163.1
    [14] Whitaker J S, Hamill T M. Evaluating methods to account for system errors in ensemble data assimilation[J]. Monthly Weather Review, 2012, 140(9): 3078−3089. doi: 10.1175/MWR-D-11-00276.1
    [15] Shen Zheqi, Tang Youmin, Li Xiaojing. A new formulation of vector weights in localized particle filters[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(709): 3269−3278. doi: 10.1002/qj.3180
    [16] Anderson J, Hoar T, Raeder K, et al. The data assimilation research testbed: A community facility[J]. Bulletin of the American Meteorological Society, 2009, 90(9): 1283−1296. doi: 10.1175/2009BAMS2618.1
    [17] Anderson J L. Localization and sampling error correction in ensemble Kalman filter data assimilation[J]. Monthly Weather Review, 2012, 140(7): 2359−2371. doi: 10.1175/MWR-D-11-00013.1
    [18] Reynolds R W. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures[J]. Journal of Climate, 1993, 6(4): 768−774. doi: 10.1175/1520-0442(1993)006<0768:IOMPAO>2.0.CO;2
    [19] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [20] GaspriI G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723−757. doi: 10.1002/qj.49712555417
    [21] 沈浙奇, 唐佑民, 高艳秋. 集合资料同化方法的理论框架及其在海洋资料同化的研究展望[J]. 海洋学报, 2016, 38(3): 1−14.

    Shen Zheqi, Tang Youmin, Gao Yanqiu. The theoretical framework of the ensemble-based data assimilation method and its prospect in oceanic data assimilation[J]. Haiyang Xuebao, 2016, 38(3): 1−14.
    [22] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343−367. doi: 10.1007/s10236-003-0036-9
    [23] Hamill T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776−2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
    [24] Frei M, Künsch H R. Bridging the ensemble Kalman and particle filters[J]. Biometrika, 2013, 100(4): 781−800. doi: 10.1093/biomet/ast020
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  153
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回