留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

军曹鱼(Rachycentron canadum)性腺分化及首周年发育的组织学观察

邝杰华 陈刚 马骞 毛非凡 周启苓 黄建盛 施钢 张健东

邝杰华,陈刚,马骞,等. 军曹鱼(Rachycentron canadum)性腺分化及首周年发育的组织学观察[J]. 海洋学报,2021,43(8):128–138 doi: 10.12284/hyxb2021126
引用本文: 邝杰华,陈刚,马骞,等. 军曹鱼(Rachycentron canadum)性腺分化及首周年发育的组织学观察[J]. 海洋学报,2021,43(8):128–138 doi: 10.12284/hyxb2021126
Kuang Jiehua,Chen Gang,Ma Qian, et al. Histological observation on gonadal differentiation and first annual gonadal development of cobia (Rachycentron canadum)[J]. Haiyang Xuebao,2021, 43(8):128–138 doi: 10.12284/hyxb2021126
Citation: Kuang Jiehua,Chen Gang,Ma Qian, et al. Histological observation on gonadal differentiation and first annual gonadal development of cobia (Rachycentron canadum)[J]. Haiyang Xuebao,2021, 43(8):128–138 doi: 10.12284/hyxb2021126

军曹鱼(Rachycentron canadum)性腺分化及首周年发育的组织学观察

doi: 10.12284/hyxb2021126
基金项目: 现代农业产业技术体系专项(CARS-47);南方海洋科学与工程广东省实验室(湛江)资助项目(ZJW-2019-06);广东海洋大学科研启动经费资助项目(R19022)
详细信息
    作者简介:

    邝杰华(1995-),男,广东省珠海市人,研究方向为鱼类种子工程与健康养殖。E-mail:3242864479@qq.com

    通讯作者:

    陈刚,教授,博士生导师,研究方向为鱼类种子工程与健康养殖。E-mail: cheng@gdou.edu.cn

    马骞,副教授,研究方向为海水鱼类发育学、生理学与遗传育种。E-mail: maq@gdou.edu.cn

  • 中图分类号: Q954.4

Histological observation on gonadal differentiation and first annual gonadal development of cobia (Rachycentron canadum)

  • 摘要: 本研究采用石蜡组织切片和H.E.染色法对军曹鱼原始性腺的形成、分化及精巢和卵巢首周年发育的组织结构变化进行观察。结果显示,军曹鱼原始生殖细胞在7孵化日龄(days post hatching,dph)时迁移到达生殖嵴,随后体细胞出现聚集和分裂,并于15 dph将原始生殖细胞完全包绕形成原始性腺。军曹鱼卵巢分化的时间要早于精巢,34 dph的稚鱼性腺组织尚未分化,但可观察到两种存在明显组织学差异的性腺类型,其中一种类型的性腺出现卵原细胞群,而另一种类型的性腺横切面较狭长,生殖细胞数量明显较少,因此推定为未分化精巢;卵巢的解剖学分化开始于44 dph,其标志为卵巢腔的形成;50 dph时精巢开始细胞学上的分化,此时精原细胞由基底膜包被形成囊泡状的细胞团。在首周年发育期间 (60~360 dph),军曹鱼的精巢发育包含I、II、III、IV、V 5个时期,而卵巢发育只包含I、II、III 3个时期。60 dph时,精巢和卵巢均处于I期;90 dph时,精巢发育至II期,卵巢仍处于I期;120 dph时,超过半数的精巢已发育至 III期,仅少部分卵巢发育至II期;150 dph时,精巢已发育至III期,而大部分卵巢发育至II期;185 dph时,精巢仍为III期,卵巢均已发育至II期;210 dph时,大部分精巢发育至IV期,卵巢仍处于II期;360 dph时,精巢已发育至V期,大部分卵巢发育至III期。上述研究结果可丰富军曹鱼的繁殖生物学研究基础,阐明其早期性腺发育规律,还可为其人工繁殖提供理论依据。
  • 图  1  军曹鱼原始生殖细胞的胚后迁移

    a. 原始生殖细胞分布位置示意图(红点表示原始生殖细胞);b, c. 3 dph和5 dph单个游离存在的原始生殖细胞;d, e. 7 dph和9 dph原始生殖细胞迁移至生殖嵴;f. 11 dph原始生殖细胞周围开始出现体细胞聚集;g. 15 dph原始生殖细胞被体细胞包围形成原始性腺雏形;PGC. 原始生殖细胞;GC. 生殖细胞;SC. 体细胞;PG. 原始性腺;MD. 中肾管;G. 肠

    Fig.  1  Migration of primordial germ cells of Rachycentron canadum during early development

    a. Schematic diagram of PGCs distribution (red dots indicated primordial germ cells); b, c. individual PGC at 3 dph and 5 dph; d, e. PGCs arrive at the genital ridge at 7 dph and 9 dph; f. somatic cells began to aggregate around PGCs at 11 dph; g. somatic cells encompassed PGCs and the prototype primary gonad was formed at 15 dph; PGC. primordial germ cells; GC. germ cell; SC. somatic cell; PG. primary gonad; MD. mesonephric duct; G. gut

    图  2  军曹鱼原始性腺的分化

    a−e. 18 dph、21 dph、24 dph、27 dph和30 dph尚未出现分化特征的原始性腺;f. 34 dph早期卵巢,形成卵原细胞群;g. 34 dph推定的精巢组织;h. 40 dph早期精巢,精原细胞出现;i. 50 dph早期精巢,形成精原细胞囊;j. 44 dph早期卵巢,出现卵巢腔;k. 48 dph早期卵巢,卵巢腔扩大;l. 52 dph早期卵巢,卵原细胞开始向初级卵母细胞过渡;BC. 血细胞;BV. 血管;GC. 生殖细胞;PG. 原始性腺;O. 卵巢;OG. 卵原细胞;PT. 推定的精巢组织;T. 精巢;SG. 精原细胞

    Fig.  2  Differentiation of primary gonad of Rachycentron canadum

    a−e. Undifferentiated primary gonad at 18 dph, 21 dph, 24 dph, 27 dph and 30 dph; f. early differentiated ovary at 34 dph, clusters of oogonia formed; g. presumptive testis at 34 dph; h. early differentiated testis at 40 dph, clusters of spermatogonia formed; i. early differentiated testis at 50 dph, cysts of spermatogonia formed; j. early differentiated ovary at 44 dph, ovarian cavity formed; k. early differentiated ovary at 48 dph, ovarian cavity increased in size; l. early differentiated ovary at 52 dph, oogonia began to transform into primary oocytes; BC. blood cell; BV. blood vessel; GC. germ cell; PG. primary gonad; O. ovary; OG. oogonia; PT. presumptive testis; T. testis; SG: spermatogonia

    图  3  军曹鱼精巢首周年发育的组织学变化

    A, a. 60 dph精巢切片;B, b. 90 dph 精巢切片;C, c. 120 dph精巢切片;D, d. 150 dph精巢切片;E, e. 185 dph 精巢切片;F, f. 210 dph精巢切片;G, g. 360 dph精巢切片;SG. 精原细胞;PSC. 初级精母细胞;SSC. 次级精母细胞;ST. 精细胞;SP. 精子;BC. 血细胞

    Fig.  3  The histologic changes of first annual testicular development of Rachycentron canadum

    A, a. Section of testis at 60 dph; B, b. section of testis at 90 dph; C, c. section of testis at 120 dph; D, d. section of testis at 150 dph; E, e. section of testis at 185 dph; F, f. section of testis at 210 dph; G, g. section of testis at 360 dph; SG.spermatogonia; PSC. primary spermatocytes; SSC. secondary spermatocytes; ST. spermatids; SP. sperms; BC. blood cells

    图  4  军曹鱼卵巢首周年发育的组织学变化

    A, a. 60 dph卵巢切片;B, b. 90 dph卵巢切片;C, c. 120 dph卵巢切片;D, d. 150 dph卵巢切片;E, e. 185 dph卵巢切片;F, f. 210 dph卵巢切片;G, g. 360 dph卵巢切片;OG. 卵原细胞;I. 第I时相卵母细胞;II. 第II时相卵母细胞;III. 第III时相卵母细胞;NU. 核仁;OD. 油滴;YN. 卵黄核

    Fig.  4  The histologic changes of first annual ovarian development of Rachycentron canadum

    A, a. Section of ovary at 60 dph; B, b. section of ovary at 90 dph; C, c. section of ovary at 120 dph; D, d. section of ovary at 150 dph; E, e. section of ovary at 185 dph; F, f. section of ovary at 210 dph; G, g. section of ovary at 360 dph; OG. oogonium; I. oocyte at Stage I; II. oocyte at Stage II; III. oocyte at Stage III; NU. nucleolus; OD. oil droplet; YN. yolk nucleus

  • [1] Castellanos-Galindo G A, Baos R, Zapata L A. Mariculture-induced introduction of cobia Rachycentron canadum (Linnaeus, 1766), a large predatory fish, in the Tropical Eastern Pacific[J]. BioInvasions Records, 2016, 5(1): 55−58. doi: 10.3391/bir.2016.5.1.10
    [2] Hamilton S, Severi W, Cavalli R O. Biology and aquaculture of cobia: a review[J]. Boletim do Instituto de Pesca, 2013, 39(4): 461−477.
    [3] 宋卉, 王树迎. 鱼类原始生殖细胞的研究进展[J]. 动物医学进展, 2004, 25(5): 22−23. doi: 10.3969/j.issn.1007-5038.2004.05.007

    Song Hui, Wang Shuying. Progress in fish primordial germ cells[J]. Progress in Veterinary Medicine, 2004, 25(5): 22−23. doi: 10.3969/j.issn.1007-5038.2004.05.007
    [4] 施瑔芳. 我国鱼类生殖生理学研究概况[J]. 海洋与湖沼, 1992, 23(3): 325−333.

    Shi Quanfang. An outline of advances on reproductive physiology of fish in China[J]. Oceanologia et Limnologia Sinica, 1992, 23(3): 325−333.
    [5] Nishimura T, Tanaka M. Gonadal development in fish[J]. Sexual Development, 2014, 8(5): 252−261. doi: 10.1159/000364924
    [6] Sajeevan M K, Kurup B M. Age and growth of cobia, Rachycentron canadum (Linnaeus, 1766) occurring in North West Coast of India[J]. Indian Journal of Geo Marine Sciences, 2017, 46(7): 1390−1395.
    [7] Babatunde T A, Amin S M N, Romano N, et al. Gonad maturation and spawning of cobia, Rachycentron canadum (Linnaeus, 1766) off the Dungun coast, Malaysia[J]. Journal of Applied Ichthyology, 2018, 34(3): 638−645. doi: 10.1111/jai.13650
    [8] 许乐乐, 刘楚吾, 刘峰. 雄鱼性腺发育的组织学观察研究进展及生殖上皮(Germinal Epithelium)的作用[J]. 水产科技, 2009(1): 6−13.

    Xu Lele, Liu Chuwu, Liu Feng. The advances on the research of histological observations to the gonadaldevelopment in male fishes and the effect of germinal epithelium[J]. Fisheries Science & Technology, 2009(1): 6−13.
    [9] Dhanasekar K, Selvakumar N, Munuswamy N. Ultrastructure of spermatozoa in cobia, Rachycentron canadum (Linnaeus, 1766)[J]. Animal Reproduction Science, 2018, 189: 43−50. doi: 10.1016/j.anireprosci.2017.12.005
    [10] Dutney L, Elizur A, Lee P. Analysis of sexually dimorphic growth in captive reared cobia (Rachycentron canadum) and the occurrence of intersex individuals[J]. Aquaculture, 2017, 468: 348−355. doi: 10.1016/j.aquaculture.2016.09.044
    [11] 刘筠. 中国养殖鱼类繁殖生理学[M]. 北京: 农业出版社, 1993: 20-42.

    Liu Yun. Propagation Physiology of Main Cultivated Fish in China[M]. Beijing: Agricultural Publishing Press, 1993: 20-42.
    [12] 刘少军. 革胡子鲇原始生殖细胞的起源、迁移及性腺分化[J]. 水生生物学报, 1991, 15(1): 1−7.

    Liu Shaojun. Studies on the orgin and migration of the primordial germ cells and gonad differentiation in Clarias lazera[J]. Acta Hydrobiologica Sinica, 1991, 15(1): 1−7.
    [13] Zhao Chunyan, Xu Shihong, Liu Yifan, et al. Gonadogenesis analysis and sex differentiation in cultured turbot (Scophthalmus maximus)[J]. Fish Physiology and Biochemistry, 2017, 43(1): 265−278. doi: 10.1007/s10695-016-0284-5
    [14] Yang Yang, Liu Qinghua, Xiao Yongshuang, et al. Germ cell migration, proliferation and differentiation during gonadal morphogenesis in all-female Japanese flounder (Paralichthys olivaceus)[J]. The Anatomical Record, 2018, 301(4): 727−741. doi: 10.1002/ar.23698
    [15] 高书堂, 高令秋, 岳朝霞. 泥鳅原始生殖细胞的发生、迁移和性腺分化[J]. 武汉大学学报(自然科学版), 1998, 44(4): 477−480.

    Gao Shutang, Gao Lingqiu, Yue Chaoxia. Studies on the origin and migration of the primordial germ cells and gonad differentiation in the loach (Misgurnus anguillicaudatus) embryo[J]. Journal of Wuhan University (Natural Science Edition), 1998, 44(4): 477−480.
    [16] 游秀容, 蔡明夷, 姜永华, 等. 大黄鱼性腺性别分化的组织学观察[J]. 水产学报, 2012, 36(7): 1057−1064. doi: 10.3724/SP.J.1231.2012.27858

    You Xiurong, Cai Mingyi, Jiang Yonghua, et al. Histological observation on gonadal sex differentiation in large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2012, 36(7): 1057−1064. doi: 10.3724/SP.J.1231.2012.27858
    [17] 代丽. 稀有鮈鲫原始生殖细胞的起源、迁移和分化及卵巢发育和卵子发生研究[D]. 重庆: 西南大学, 2013.

    Dai Li. Studies on the PGC’s origin migration and differentiation of Gobiocypris rarus and its ovarian development and oogenesis[D]. Chongqing: Southwest University, 2013.
    [18] Saito D, Morinaga C, Aoki Y, et al. Proliferation of germ cells during gonadal sex differentiation in medaka: Insights from germ cell-depleted mutant zenzai[J]. Developmental Biology, 2007, 310(2): 280−290. doi: 10.1016/j.ydbio.2007.07.039
    [19] Lewis Z R, McClellan M C, Postlethwait J H, et al. Female-specific increase in primordial germ cells marks sex differentiation in threespine stickleback (Gasterosteus aculeatus)[J]. Journal of Morphology, 2008, 269(8): 909−921. doi: 10.1002/jmor.10608
    [20] Gao Zexia, Wang Hanping, Rapp D, et al. Gonadal sex differentiation in the bluegill sunfishLepomis macrochirus and its relation to fish size and age[J]. Aquaculture, 2009, 294(1/2): 138−146.
    [21] Sandra G E, Norma M M. Sexual determination and differentiation in teleost fish[J]. Reviews in Fish Biology and Fisheries, 2009, 20(1): 101−121.
    [22] Brown-Peterson N J, Overstreet R M, Lotz J M, et al. Reproductive biology of cobia, Rachycentron canadum, from coastal waters of the southern United States[J]. Fishery Bulletin, 2001, 99(1): 15−28.
    [23] Lotz J M, Overstreet R M, Franks J S. Gonadal maturation in the cobia, Rachycentron canadum, from the northcentral gulf of mexico[J]. Gulf Research Reports, 1996, 9(3): 147−159.
    [24] van der Velde T D, Griffiths S P, Fry G C. Reproductive biology of the commercially and recreationally important cobia Rachycentron canadum in northeastern Australia[J]. Fisheries Science, 2010, 76(1): 33−43. doi: 10.1007/s12562-009-0177-y
    [25] 蓝军南, 区又君, 温久福, 等. 四指马鲅精巢发育及精子发生的组织学和超微结构[J]. 中国水产科学, 2020, 27(6): 637−648.

    Lan Junnan, Ou Youjun, Wen Jiufu, et al. Histology and ultrastructure of developing testes and spermatogenesis in the fourfinger threadfin, Eleutheronema tetradactylum (Show, 1804)[J]. Journal of Fishery Sciences of China, 2020, 27(6): 637−648.
    [26] 黄小林, 杨育凯, 李涛, 等. 池塘养殖黄斑篮子鱼初次性成熟性腺发育研究[J]. 南方水产科学, 2020, 16(5): 99−107. doi: 10.12131/20200051

    Huang Xiaolin, Yang Yukai, Li Tao, et al. Gonadal development of first sexual maturation of Siganus oramin cultured in pond[J]. South China Fisheries Science, 2020, 16(5): 99−107. doi: 10.12131/20200051
    [27] 崔丹, 刘志伟, 刘南希, 等. 金钱鱼性腺发育及其组织结构观察[J]. 水产学报, 2013, 37(5): 696−704. doi: 10.3724/SP.J.1231.2013.38442

    Cui Dan, Liu Zhiwei, Liu Nanxi, et al. Histological study on the gonadal development of Scatophagus argus[J]. Journal of Fisheries of China, 2013, 37(5): 696−704. doi: 10.3724/SP.J.1231.2013.38442
    [28] 赵一杰, 张美昭, 温海深. 松江鲈鱼性腺发育组织学观察[J]. 海洋湖沼通报, 2013(1): 16−22.

    Zhao Yijie, Zhang Meizhao, Wen Haishen. Histological observation of gonad development in Trachidermus fasciatus[J]. Transactions of Oceanology and Limnology, 2013(1): 16−22.
    [29] Schulz R W, de Franca L R, Lareyre J J, et al. Spermatogenesis in fish[J]. General and Comparative Endocrinology, 2010, 165(3): 390−411. doi: 10.1016/j.ygcen.2009.02.013
    [30] 刘晨斌, 徐革锋, 黄天晴, 等. 鱼类性腺发育研究进展[J]. 水产学杂志, 2019, 32(1): 46−54. doi: 10.3969/j.issn.1005-3832.2019.01.009

    Liu Chenbin, Xu Gefeng, Huang Tianqing, et al. A review of research progress on gonadal development in fish[J]. Chinese Journal of Fisheries, 2019, 32(1): 46−54. doi: 10.3969/j.issn.1005-3832.2019.01.009
    [31] 刘皓, 张玉红, 罗杰, 等. 红鳍笛鲷(Lutjanus erythopterus)卵巢发育的组织学研究[J]. 海洋与湖沼, 2016, 47(1): 269−275.

    Liu Hao, Zhang Yuhong, Luo Jie, et al. Histology of ovarian development of crimson snapper Lutjanus erythopterus[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 269−275.
    [32] 柳学周, 徐永江, 刘乃真, 等. 半滑舌鳎卵巢发育的组织学和形态数量特征研究[J]. 渔业科学进展, 2009, 30(6): 25−35. doi: 10.3969/j.issn.1000-7075.2009.06.004

    Liu Xuezhou, Xu Yongjiang, Liu Naizhen, et al. Study on histological and morphometric characters of gonad development of Cynoglossus semilaevis Günther[J]. Progress in Fishery Sciences, 2009, 30(6): 25−35. doi: 10.3969/j.issn.1000-7075.2009.06.004
    [33] 李培伦, 刘伟, 王继隆. 乌苏里白鲑洄游群体性腺发育组织学观察[J]. 生物学杂志, 2015, 32(1): 34−38. doi: 10.3969/j.issn.2095-1736.2015.01.034

    Li Peilun, Liu Wei, Wang Jilong. Observation on the gonadal development of the Siberian gudgeon migratory populations[J]. Journal of Biology, 2015, 32(1): 34−38. doi: 10.3969/j.issn.2095-1736.2015.01.034
    [34] 孙鹏, 尹飞, 施兆鸿, 等. 养殖银鲳卵巢发育的组织学观察[J]. 中国水产科学, 2013, 20(2): 293−298. doi: 10.3724/SP.J.1118.2013.00293

    Sun Peng, Yin Fei, Shi Zhaohong, et al. Histological analysis of ovary development in the cultured silver pom-fret, Pampus argenteus[J]. Journal of Fishery Sciences of China, 2013, 20(2): 293−298. doi: 10.3724/SP.J.1118.2013.00293
    [35] 施兆鸿, 罗海忠, 高露姣, 等. 灰鲳卵巢发育的组织学研究[J]. 海洋水产研究, 2006, 27(4): 1−5.

    Shi Zhaohong, Luo Haizhong, Gao Lujiao, et al. Study on histology of ovary development of Pampus cinereus[J]. Marine Fisheries Research, 2006, 27(4): 1−5.
    [36] 史丹, 温海深, 杨艳平. 许氏平鲉卵巢发育的周年变化研究[J]. 中国海洋大学学报, 2011, 41(9): 25−30.

    Shi Dan, Wen Haishen, Yang Yanping. The annual change of ovarian development in female Sebastes schlegeli[J]. Periodical of Ocean University of China, 2011, 41(9): 25−30.
    [37] 朱亮华, 孙敏, 张鼎元, 等. 黑鱾卵巢发育的组织学研究[J]. 应用海洋学学报, 2018, 37(2): 255−262. doi: 10.3969/J.ISSN.2095-4972.2018.02.013

    Zhu Lianghua, Sun Min, Zhang Dingyuan, et al. Histological study on the ovary development of Girella leonina[J]. Journal of Applied Oceanography, 2018, 37(2): 255−262. doi: 10.3969/J.ISSN.2095-4972.2018.02.013
    [38] 洪磊, 李兆新, 陈超, 等. 美洲鲥鱼卵巢发育规律和性类固醇激素变化研究[J]. 中国工程科学, 2014, 16(9): 86−92. doi: 10.3969/j.issn.1009-1742.2014.09.013

    Hong Lei, Li Zhaoxin, Chen Chao, et al. The study of ovary development and steroid hormone changes in Alosa sapidissima[J]. Engineering Science, 2014, 16(9): 86−92. doi: 10.3969/j.issn.1009-1742.2014.09.013
  • 加载中
图(4)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  141
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回