Distribution patterns and influencing factors of transparent exopolymer particles (TEP) in the coast of eastern Fujian in summer
-
摘要: 透明胞外聚合颗粒物(TEP)在海洋微食物网和海洋碳循环中发挥着重要作用。本文针对夏季闽东沿海TEP的分布特征及影响因素进行研究。结果表明,闽东沿海TEP含量(以黄原胶为标准物质计算,后同)范围为25.2~935.5 μg/L,平均值为(201.8±177.9) μg/L。整体而言,TEP的分布表现为近岸高、远岸低,表层TEP含量相对于底层要低。相关性分析显示,研究海域TEP含量与浊度和营养盐(硅酸盐、磷酸盐、硝酸盐、亚硝酸盐和铵盐)浓度呈正相关,与pH、溶解氧浓度和小型浮游生物量呈负相关。分级叶绿素a结果显示,相对于其他尺寸浮游植物,调查海域小型浮游生物可能对TEP含量的贡献最大。相比于开阔大洋中TEP主控因素为浮游植物而言,夏季闽东海域TEP主要由浮游植物在衰退阶段产生,其分布主要受颗粒物再悬浮作用影响。该结果不仅进一步阐明了近岸海域与开阔大洋TEP影响因素的区别,并且对我国近海海域不同区域TEP分布研究空白进行了补充。Abstract: Transparent exopolymer particles (TEP) play an important role in the marine micro-food web and the marine carbon cycle. The distribution patterns and influencing factors of TEP in the coast of eastern Fujian in summer are investigated in this research. The results show that the contents of TEP (calculated with xanthan gum as the standard substance, the same below) in the coast of eastern Fujian ranged from 25.2 μg/L to 935.5 μg/L, with an average value of (201.8±177.9) μg/L. The level of TEP is high in the near-shore and low in the far-shore, which in surface layer is lower than that in bottom layer. Correlation analysis shows that TEP in the research area are positively correlated with turbidity, silicate, phosphate, nitrite, nitrate and ammonium concentration, negatively correlated with pH, DO concentration and Net-level phytoplankton. The results of chlorophyll a fractions show that Net-level phytoplankton in the area may contribute more to TEP than other size phytoplankton. Comparing with phytoplankton as the main controlling factor of TEP in the open ocean, TEP in the coast of eastern Fujian in summer are mainly produced by phytoplankton in the decline stage, and its distribution is mainly affected by the resuspension of particles. The results can not only further clarify the differences between the influencing factors of TEP in the coastal waters and the open ocean, but also supplement the gaps in the study of TEP distribution in different regions of coastal waters in China.
-
图 6 闽东沿海各参数的相关性
a. TEP与各参数的相关性;b. TEP含量/Chl a浓度与各参数的相关性;c. TEP对POC的贡献率与各参数的相关性;*表示p<0.05,**表示p<0.01
Fig. 6 Correlation of various parameters along the the coast of eastern Fujian
a. Correlation between TEP and various parameters; b. correlation between TEP content/Chl a concentration and various parameters; c. correlation between the contribution rate of TEP to POC and various parameters; * represents p<0.05,** represents p<0.01
图 7 闽东沿海遥感Chl a浓度数据
红粗线表示调查的时间段(2019年7月24−27日);M01站位为藻华后期,M04站位为藻华时期;M01−M04站位代表近岸到远岸的变化趋势;M01、M08、M09和M16站位代表近岸从北向南变化趋势
Fig. 7 Remote sensing data of of Chl a concentration in the coast of eastern Fujian
The red bold line represents the time period of the survey(July 24−27, 2019); Station M01 is in the later period of algal blooms, and M04 is in the period of algal blooms; the M01−M04 stations represent the changes from near-shore to far-shore; the stations M01, M08, M09, and M16 represent the changes of near-shore from north to south
表 1 夏季闽东海域TEP及其他环境参数
Tab. 1 TEP and other environmental parameters in the coast of eastern Fujian
参数 表层 底层 最大值 最小值 平均值 最大值 最小值 平均值 温度/℃ 28.80 26.45 27.69±0.63 25.96 23.52 24.43±0.75 盐度 33.064 29.513 31.810±1.134 34.467 31.870 34.019±0.70 pH 8.25 7.94 8.10±0.10 8.09 7.95 8.00±0.04 DO浓度/(mg·L−1) 9.18 5.53 7.15±1.21 7.02 3.98 4.91±0.79 浊度/NTU 21.5 1.3 7.6±6.5 115.7 11.9 36.0±29.5 硅酸盐浓度/(μmol·L−1) 25.75 0.46 9.77±8.35 18.06 4.18 11.03±4.24 磷酸盐浓度/(μmol·L−1) 0.80 0.02 0.20±0.22 0.64 0.21 0.41±0.12 亚硝酸盐浓度/(μmol·L−1) 2.10 0.03 0.65±0.76 2.13 0.39 1.19±0.43 硝酸盐浓度/(μmol·L−1) 20.73 1.420 8.30±6.40 15.94 4.46 8.09±2.75 铵盐浓度/(μmol·L−1) 1.30 0.58 0.81±0.21 1.70 0.56 0.82±0.33 POC含量(mg·L−1) 0.42 0.16 0.29±0.09 0.55 0.13 0.26±0.11 TEP含量/(μg·L−1) 437.7 54.7 161.4±111.7 935.5 87.1 365.1±223.6 Chl a浓度/(mg·m−3) Net 10.33 0.39 2.62±2.65 1.27 0.12 0.50±0.30 Nano 9.68 0.25 3.33±3.13 7.76 0.18 1.50±2.24 Pico 6.66 0.28 1.96±1.97 1.83 0.07 0.63±0.50 总浓度 18.95 2.33 7.90±5.14 9.32 0.61 2.62±2.73 注:表层样本数为16,底层样本数为15。 表 2 世界不同海域TEP含量分布
Tab. 2 Summary of TEP contents around the world
海域 季节 采样层次 TEP含量/(μg·L−1) TEP含量/Chl a浓度 文献 加州圣巴巴拉海峡 春 0~20 m 131~290 − [36] 南极罗斯海 冬 0~150 m 0~2 800 89.1(均值) [37] 大西洋东北部 夏 表层 ≤ 124 49~104 [30] 南极半岛(南大洋) 春 0~200 m 0~48.9 40.9(均值) [31] 日本Otsuchi海湾 春 0~15 m 24~2 321 125~144 [35] 以色列亚喀巴海湾 春 0~300 m 23~228 − [32] 圣劳伦斯河口 夏、秋 0~320 m 15~1 548 − [29] Baie des Veys (英吉利海峡) 春、秋 表层 36.90~1 735.05 9.43~677.0 [34] Lingreville-sur-mer(英吉利海峡) 春、秋 表层 26.45~3 604.52 8.81~1 239.13 印度多纳波拉湾 全年 3 m 1.3~149.1 − [33] 闽东沿海 夏 0~40 m 25.2~935.5 5.25~636.37 本文 珠江口 夏 0 ~30 m 85.0~1 234.9 3.9~467.4 [21] 注:−代表TEP含量/Chl a浓度的计算值在原文献中缺失。 -
[1] Van der Maarel E. Ecotones and ecoclines are different[J]. Journal of Vegetation Science, 1990, 1(1): 135−138. doi: 10.2307/3236065 [2] Marinov I, Doney S C, Lima I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7: 3941−3959. doi: 10.5194/bg-7-3941-2010 [3] Kaiser M J, Attrill M J, Jennings S, et al. Marine Ecology: Processes, Systems, and Impacts[M]. 2nd ed. Oxford: Oxford University Press, 2011. [4] Porter E M, Bowman W D, Clark C M, et al. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity[J]. Biogeochemistry, 2013, 114(1/3): 93−120. [5] Morelle J, Schapira M, Claquin P. Dynamics of phytoplankton productivity and exopolysaccharides (EPS and TEP) pools in the Seine Estuary (France, Normandy) over tidal cycles and over two contrasting seasons[J]. Marine Environmental Research, 2017, 131: 162−176. doi: 10.1016/j.marenvres.2017.09.007 [6] Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333. [7] Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131−1140. doi: 10.1016/0967-0637(93)90129-Q [8] Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327−346. doi: 10.1016/S0278-4343(00)00101-1 [9] Bhaskar P V, Bhosle N B. Microbial extracellular polymeric substances in marine biogeochemical processes[J]. Current Science, 2005, 88(1): 45−53. [10] Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002 [11] Harlay J, Bodt C D, Engel A, et al. Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(8): 1251−1265. doi: 10.1016/j.dsr.2009.01.014 [12] 孙军, 郭聪聪, 张桂成. 透明胞外聚合颗粒物碳输运新途径[J]. 海洋学报, 2019, 41(8): 125−130.Sun Jun, Guo Congcong, Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao, 2019, 41(8): 125−130. [13] 孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036Sun Jun. Transparent Exopolymer Particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036 [14] Prieto L, Sommer F, Stibor H, et al. Effects of planktonic copepods on transparent exopolymeric particles (TEP) abundance and size spectra[J]. Journal of Plankton Research, 2001, 23(5): 515−525. doi: 10.1093/plankt/23.5.515 [15] Flood P R, Deibel D, Morris C C. Filtration of colloidal melanin from sea water by planktonic tunicates[J]. Nature, 1992, 355(6361): 630−632. doi: 10.1038/355630a0 [16] Discart V, Bilad M R, Vankelecom I F J. Critical evaluation of the determination methods for transparent exopolymer particles, agents of membrane fouling[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(2): 167−192. doi: 10.1080/10643389.2013.829982 [17] Villacorte L O, Kennedy M D, Amy G L, et al. Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water[J]. Desalination and Water Treatment, 2009, 5(1/3): 207−212. [18] Mari X, Rassoulzadegan F, Brussaard C P D, et al. Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N-or P-limitation: a controlling factor of the retention/export balance[J]. Harmful Algae, 2005, 4(5): 895−914. [19] Fukao T, Kimoto K, Kotani Y. Production of transparent exopolymer particles by four diatom species[J]. Fisheries Science, 2010, 76(5): 755−760. doi: 10.1007/s12562-010-0265-z [20] 彭安国, 黄奕普. 九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报(自然科学版), 2007, 46(S1): 38−42.Peng Anguo, Huang Yipu. Study on TEP and its relationships with uranium, thorium, polonium isotopes in Jiulong estuary[J]. Journal of Xiamen University (Natural Science), 2007, 46(S1): 38−42. [21] 孙翠慈, 王友绍, 吴梅林, 等. 夏季珠江口透明胞外聚合颗粒物分布特征[J]. 热带海洋学报, 2011, 29(5): 81−87. doi: 10.3969/j.issn.1009-5470.2011.05.011Sun Cuici, Wang Youshao, Wu Meilin, et al. Distribution of transparent exopolymer particles in the Pearl River Estuary in summer[J]. Journal of Tropical Oceanography, 2011, 29(5): 81−87. doi: 10.3969/j.issn.1009-5470.2011.05.011 [22] 马丽丽, 陈敏, 郭劳动, 等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报, 2012, 34(5): 81−90.Ma Lili, Chen Min, Guo Laodong, et al. The content and source of transparent exopolymer particles in the Northern Bering Sea[J]. Haiyang Xuebao, 2012, 34(5): 81−90. [23] 王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001 [24] 孙晓庆, 董树刚. 沙埕港春季浮游植物群落结构的初步研究[J]. 南方水产, 2008, 4(3): 48−57.Sun Xiaoqing, Dong Shugang. A preliminary study on phytoplankton community structure in Shacheng Harbour in spring season[J]. South China Fisheries Science, 2008, 4(3): 48−57. [25] 王雨, 林茂, 林更铭. 福建沿岸不同海区夏季浮游植物的组成与分布[J]. 台湾海峡, 2009, 28(4): 496−503.Wang Yu, Lin Mao, Lin Gengming. Study on the composition and distribution of phytoplankton in different waters of coastal Fujian in summer[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(4): 496−503. [26] Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001 [27] Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 99−109. doi: 10.1016/0967-0645(95)00006-C [28] Bittar T B, Passow U, Hamaraty L, et al. An updated method for the calibration of transparent exopolymer particle measurements[J]. Limnology and Oceanography: Methods, 2018, 16(10): 621−628. doi: 10.1002/lom3.10268 [29] Annane S, St-Amand L, Starr M, et al. Contribution of transparent exopolymeric particles (TEP) to estuarine particulate organic carbon pool[J]. Marine Ecology Progress Series, 2015, 529: 17−34. doi: 10.3354/meps11294 [30] Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(1): 83−92. doi: 10.1016/j.dsr.2003.09.001 [31] Ortega-Retuerta E, Reche I, Pulido-Villena E, et al. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean[J]. Marine Chemistry, 2009, 115(1/2): 59−65. [32] Bar-Zeev E, Berman-Frank I, Stambler N, et al. Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba[J]. Aquatic Microbial Ecology, 2009, 56(2/3): 217−225. [33] Bhaskar P V, Bhosle N B. Dynamics of transparent exopolymeric particles (TEP) and particle-associated carbohydrates in the Dona Paula bay, west coast of India[J]. Journal of Earth System Science, 2006, 115(4): 403−413. doi: 10.1007/BF02702869 [34] Klein C, Claquin P, Pannard A, et al. Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems[J]. Marine Ecology Progress Series, 2011, 427: 13−27. doi: 10.3354/meps09049 [35] Ramaiah N, Yoshikawa T, Furuya K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan[J]. Marine Ecology Progress Series, 2001, 212: 79−88. doi: 10.3354/meps212079 [36] Azetsu-Scott K, Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741−748. doi: 10.4319/lo.2004.49.3.0741 [37] Hong Ying, Smith W O, White A M. Studies on transparent exopolymer particles (TEP) produced in the Ross sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3): 368−376. doi: 10.1111/j.0022-3646.1997.00368.x [38] Morelle J, Schapira M, Françoise S, et al. Dynamics of exopolymeric carbon pools in relation with phytoplankton succession along the salinity gradient of a temperate estuary (France)[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 18−29. doi: 10.1016/j.ecss.2018.05.008 [39] Prieto L, Navarro G, Cózar A, et al. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53(11/13): 1314−1328. [40] Wolfstein K, De Brouwer J F C, Stal L J. Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances[J]. Marine Ecology Progress Series, 2002, 245: 21−31. doi: 10.3354/meps245021 [41] Heip C H R, Goosen N K, Herman P M J, et al. Production and consumption of biological particles in temperate tidal estuaries[J]. Oceanography and Marine Biology: An Annual Review, 1995, 33: 1−149. [42] Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom[J]. Journal of Plankton Research, 2000, 22(3): 485−497. doi: 10.1093/plankt/22.3.485 [43] Malpezzi M A, Sanford L P, Crump B C. Abundance and distribution of transparent exopolymer particles in the estuarine turbidity maximum of Chesapeake Bay[J]. Marine Ecology Progress Series, 2013, 486: 23−35. doi: 10.3354/meps10362 [44] Muylaert K, Sabbe K, Vyverman W. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium)[J]. Estuarine, Coastal and Shelf Science, 2000, 50(5): 673−687. doi: 10.1006/ecss.2000.0590 [45] Kiørboe T. Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs[M]. London: Academic Press, 1993, 29: 1−72. [46] Hobson L A, McQuoid M R. Temporal variations among planktonic diatom assemblages in a turbulent environment of the southern Strait of Georgia, British Columbia, Canada[J]. Marine Ecology Progress Series, 1997, 150: 263−274. doi: 10.3354/meps150263 [47] 刘子琳, 潘建明, 陈忠元. 南大洋浮游植物现存量对颗粒有机碳的贡献[J]. 海洋科学, 2004, 28(5): 44−49. doi: 10.3969/j.issn.1000-3096.2004.05.010Liu Zilin, Pan Jianming, Chen Zhongyuan. Contribution of phytoplankton standing stock for the particulate organic carbon in the Southern Ocean[J]. Marine Sciences, 2004, 28(5): 44−49. doi: 10.3969/j.issn.1000-3096.2004.05.010