留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季闽东沿海水体中透明胞外聚合颗粒物的分布特征及影响因素

薛思佑 胡佶 韩正兵 蔡昱明 刘小涯 冯毓彬 于培松 张慧娟 潘建明

薛思佑,胡佶,韩正兵,等. 夏季闽东沿海水体中透明胞外聚合颗粒物的分布特征及影响因素[J]. 海洋学报,2021,43(8):17–30 doi: 10.12284/hyxb2021114
引用本文: 薛思佑,胡佶,韩正兵,等. 夏季闽东沿海水体中透明胞外聚合颗粒物的分布特征及影响因素[J]. 海洋学报,2021,43(8):17–30 doi: 10.12284/hyxb2021114
Xue Siyou,Hu Ji,Han Zhengbing, et al. Distribution patterns and influencing factors of transparent exopolymer particles (TEP) in the coast of eastern Fujian in summer[J]. Haiyang Xuebao,2021, 43(8):17–30 doi: 10.12284/hyxb2021114
Citation: Xue Siyou,Hu Ji,Han Zhengbing, et al. Distribution patterns and influencing factors of transparent exopolymer particles (TEP) in the coast of eastern Fujian in summer[J]. Haiyang Xuebao,2021, 43(8):17–30 doi: 10.12284/hyxb2021114

夏季闽东沿海水体中透明胞外聚合颗粒物的分布特征及影响因素

doi: 10.12284/hyxb2021114
基金项目: 国家重点研发计划(2016YFC1402405,2018YFC1406304)
详细信息
    作者简介:

    薛思佑(1994—),男,浙江省温州市人,研究方向为海洋中碳的生物地球化学过程。E-mail:184839869@qq.com

    通讯作者:

    胡佶,男,副研究员,主要从事海洋生物地球化学研究。E-mail:huj@sio.org.cn

  • 中图分类号: P734.2+3

Distribution patterns and influencing factors of transparent exopolymer particles (TEP) in the coast of eastern Fujian in summer

  • 摘要: 透明胞外聚合颗粒物(TEP)在海洋微食物网和海洋碳循环中发挥着重要作用。本文针对夏季闽东沿海TEP的分布特征及影响因素进行研究。结果表明,闽东沿海TEP含量(以黄原胶为标准物质计算,后同)范围为25.2~935.5 μg/L,平均值为(201.8±177.9) μg/L。整体而言,TEP的分布表现为近岸高、远岸低,表层TEP含量相对于底层要低。相关性分析显示,研究海域TEP含量与浊度和营养盐(硅酸盐、磷酸盐、硝酸盐、亚硝酸盐和铵盐)浓度呈正相关,与pH、溶解氧浓度和小型浮游生物量呈负相关。分级叶绿素a结果显示,相对于其他尺寸浮游植物,调查海域小型浮游生物可能对TEP含量的贡献最大。相比于开阔大洋中TEP主控因素为浮游植物而言,夏季闽东海域TEP主要由浮游植物在衰退阶段产生,其分布主要受颗粒物再悬浮作用影响。该结果不仅进一步阐明了近岸海域与开阔大洋TEP影响因素的区别,并且对我国近海海域不同区域TEP分布研究空白进行了补充。
  • 图  1  2019年闽东沿海夏季采样站位

    Fig.  1  The sampling stations in the coast of eastern Fujian in summer of 2019

    图  2  2019年闽东沿海夏季TEP分布

    a. M01−M04站位断面;b. M08−M05站位断面;c. M09−M12站位断面;d. M16−M13站位断面;e. 表层;f. 底层

    Fig.  2  The distribution of TEP in the coast of eastern Fujian in summer of 2019

    a. M01−M04 sections; b. M08−M05 sections; c. M09−M12 sections; d. M16−M13 sections; e. surface layer; f. bottom layer

    图  3  2019年闽东沿海夏季POC分布

    a. M01−M04站位断面;b. M08−M05站位断面;c. M09−M12站位断面;d. M16−M13站位断面;e. 表层

    Fig.  3  The distribution of POC in the coast of eastern Fujian in summer of 2019

    a. M01−M04 sections; b. M08−M05 sections; c. M09−M12 sections; d. M16−M13 sections; e. surface layer

    图  4  2019年闽东沿海夏季Chl a浓度分布

    a. M01−M04站位断面;b. M08−M05站位断面;c. M09−M12站位断面;d. M16−M13站位断面;e. 表层

    Fig.  4  The distribution of Chl a concentration in the coast of eastern Fujian in summer of 2019

    a. M01−M04 sections; b. M08−M05 sections; c. M09−M12 sections; d. M16−M13 sections; e. surface layer

    图  5  闽东沿海叶绿素a粒径相对组成结构

    Fig.  5  Size fractions of Chl a in the coast of eastern Fujian

    图  6  闽东沿海各参数的相关性

    a. TEP与各参数的相关性;b. TEP含量/Chl a浓度与各参数的相关性;c. TEP对POC的贡献率与各参数的相关性;*表示p<0.05,**表示p<0.01

    Fig.  6  Correlation of various parameters along the the coast of eastern Fujian

    a. Correlation between TEP and various parameters; b. correlation between TEP content/Chl a concentration and various parameters; c. correlation between the contribution rate of TEP to POC and various parameters; * represents p<0.05,** represents p<0.01

    图  7  闽东沿海遥感Chl a浓度数据

    红粗线表示调查的时间段(2019年7月24−27日);M01站位为藻华后期,M04站位为藻华时期;M01−M04站位代表近岸到远岸的变化趋势;M01、M08、M09和M16站位代表近岸从北向南变化趋势

    Fig.  7  Remote sensing data of of Chl a concentration in the coast of eastern Fujian

    The red bold line represents the time period of the survey(July 24−27, 2019); Station M01 is in the later period of algal blooms, and M04 is in the period of algal blooms; the M01−M04 stations represent the changes from near-shore to far-shore; the stations M01, M08, M09, and M16 represent the changes of near-shore from north to south

    表  1  夏季闽东海域TEP及其他环境参数

    Tab.  1  TEP and other environmental parameters in the coast of eastern Fujian

    参数表层底层
    最大值最小值平均值最大值最小值平均值
    温度/℃28.8026.4527.69±0.6325.9623.5224.43±0.75
    盐度33.06429.51331.810±1.13434.46731.87034.019±0.70
    pH8.257.948.10±0.108.097.958.00±0.04
    DO浓度/(mg·L−19.185.537.15±1.217.023.984.91±0.79
    浊度/NTU21.51.37.6±6.5115.711.936.0±29.5
    硅酸盐浓度/(μmol·L−125.750.469.77±8.3518.064.1811.03±4.24
    磷酸盐浓度/(μmol·L−10.800.020.20±0.220.640.210.41±0.12
    亚硝酸盐浓度/(μmol·L−12.100.030.65±0.762.130.391.19±0.43
    硝酸盐浓度/(μmol·L−120.731.4208.30±6.4015.944.468.09±2.75
    铵盐浓度/(μmol·L−11.300.580.81±0.211.700.560.82±0.33
    POC含量(mg·L−10.420.160.29±0.090.550.130.26±0.11
    TEP含量/(μg·L−1437.754.7161.4±111.7935.587.1365.1±223.6
    Chl a浓度/(mg·m−3Net10.330.392.62±2.651.270.120.50±0.30
    Nano9.680.253.33±3.137.760.181.50±2.24
    Pico6.660.281.96±1.971.830.070.63±0.50
    总浓度18.952.337.90±5.149.320.612.62±2.73
      注:表层样本数为16,底层样本数为15。
    下载: 导出CSV

    表  2  世界不同海域TEP含量分布

    Tab.  2  Summary of TEP contents around the world

    海域季节采样层次TEP含量/(μg·L−1TEP含量/Chl a浓度文献
    加州圣巴巴拉海峡0~20 m131~290[36]
    南极罗斯海0~150 m0~2 80089.1(均值)[37]
    大西洋东北部表层≤ 12449~104[30]
    南极半岛(南大洋)0~200 m0~48.940.9(均值)[31]
    日本Otsuchi海湾0~15 m24~2 321125~144[35]
    以色列亚喀巴海湾0~300 m23~228[32]
    圣劳伦斯河口夏、秋0~320 m15~1 548[29]
    Baie des Veys (英吉利海峡)春、秋表层36.90~1 735.059.43~677.0[34]
    Lingreville-sur-mer(英吉利海峡)春、秋表层26.45~3 604.528.81~1 239.13
    印度多纳波拉湾全年3 m1.3~149.1[33]
    闽东沿海0~40 m25.2~935.55.25~636.37本文
    珠江口0 ~30 m85.0~1 234.93.9~467.4[21]
      注:−代表TEP含量/Chl a浓度的计算值在原文献中缺失。
    下载: 导出CSV
  • [1] Van der Maarel E. Ecotones and ecoclines are different[J]. Journal of Vegetation Science, 1990, 1(1): 135−138. doi: 10.2307/3236065
    [2] Marinov I, Doney S C, Lima I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7: 3941−3959. doi: 10.5194/bg-7-3941-2010
    [3] Kaiser M J, Attrill M J, Jennings S, et al. Marine Ecology: Processes, Systems, and Impacts[M]. 2nd ed. Oxford: Oxford University Press, 2011.
    [4] Porter E M, Bowman W D, Clark C M, et al. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity[J]. Biogeochemistry, 2013, 114(1/3): 93−120.
    [5] Morelle J, Schapira M, Claquin P. Dynamics of phytoplankton productivity and exopolysaccharides (EPS and TEP) pools in the Seine Estuary (France, Normandy) over tidal cycles and over two contrasting seasons[J]. Marine Environmental Research, 2017, 131: 162−176. doi: 10.1016/j.marenvres.2017.09.007
    [6] Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [7] Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131−1140. doi: 10.1016/0967-0637(93)90129-Q
    [8] Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327−346. doi: 10.1016/S0278-4343(00)00101-1
    [9] Bhaskar P V, Bhosle N B. Microbial extracellular polymeric substances in marine biogeochemical processes[J]. Current Science, 2005, 88(1): 45−53.
    [10] Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002
    [11] Harlay J, Bodt C D, Engel A, et al. Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(8): 1251−1265. doi: 10.1016/j.dsr.2009.01.014
    [12] 孙军, 郭聪聪, 张桂成. 透明胞外聚合颗粒物碳输运新途径[J]. 海洋学报, 2019, 41(8): 125−130.

    Sun Jun, Guo Congcong, Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao, 2019, 41(8): 125−130.
    [13] 孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036

    Sun Jun. Transparent Exopolymer Particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036
    [14] Prieto L, Sommer F, Stibor H, et al. Effects of planktonic copepods on transparent exopolymeric particles (TEP) abundance and size spectra[J]. Journal of Plankton Research, 2001, 23(5): 515−525. doi: 10.1093/plankt/23.5.515
    [15] Flood P R, Deibel D, Morris C C. Filtration of colloidal melanin from sea water by planktonic tunicates[J]. Nature, 1992, 355(6361): 630−632. doi: 10.1038/355630a0
    [16] Discart V, Bilad M R, Vankelecom I F J. Critical evaluation of the determination methods for transparent exopolymer particles, agents of membrane fouling[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(2): 167−192. doi: 10.1080/10643389.2013.829982
    [17] Villacorte L O, Kennedy M D, Amy G L, et al. Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water[J]. Desalination and Water Treatment, 2009, 5(1/3): 207−212.
    [18] Mari X, Rassoulzadegan F, Brussaard C P D, et al. Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N-or P-limitation: a controlling factor of the retention/export balance[J]. Harmful Algae, 2005, 4(5): 895−914.
    [19] Fukao T, Kimoto K, Kotani Y. Production of transparent exopolymer particles by four diatom species[J]. Fisheries Science, 2010, 76(5): 755−760. doi: 10.1007/s12562-010-0265-z
    [20] 彭安国, 黄奕普. 九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报(自然科学版), 2007, 46(S1): 38−42.

    Peng Anguo, Huang Yipu. Study on TEP and its relationships with uranium, thorium, polonium isotopes in Jiulong estuary[J]. Journal of Xiamen University (Natural Science), 2007, 46(S1): 38−42.
    [21] 孙翠慈, 王友绍, 吴梅林, 等. 夏季珠江口透明胞外聚合颗粒物分布特征[J]. 热带海洋学报, 2011, 29(5): 81−87. doi: 10.3969/j.issn.1009-5470.2011.05.011

    Sun Cuici, Wang Youshao, Wu Meilin, et al. Distribution of transparent exopolymer particles in the Pearl River Estuary in summer[J]. Journal of Tropical Oceanography, 2011, 29(5): 81−87. doi: 10.3969/j.issn.1009-5470.2011.05.011
    [22] 马丽丽, 陈敏, 郭劳动, 等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报, 2012, 34(5): 81−90.

    Ma Lili, Chen Min, Guo Laodong, et al. The content and source of transparent exopolymer particles in the Northern Bering Sea[J]. Haiyang Xuebao, 2012, 34(5): 81−90.
    [23] 王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001

    Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001
    [24] 孙晓庆, 董树刚. 沙埕港春季浮游植物群落结构的初步研究[J]. 南方水产, 2008, 4(3): 48−57.

    Sun Xiaoqing, Dong Shugang. A preliminary study on phytoplankton community structure in Shacheng Harbour in spring season[J]. South China Fisheries Science, 2008, 4(3): 48−57.
    [25] 王雨, 林茂, 林更铭. 福建沿岸不同海区夏季浮游植物的组成与分布[J]. 台湾海峡, 2009, 28(4): 496−503.

    Wang Yu, Lin Mao, Lin Gengming. Study on the composition and distribution of phytoplankton in different waters of coastal Fujian in summer[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(4): 496−503.
    [26] Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001
    [27] Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 99−109. doi: 10.1016/0967-0645(95)00006-C
    [28] Bittar T B, Passow U, Hamaraty L, et al. An updated method for the calibration of transparent exopolymer particle measurements[J]. Limnology and Oceanography: Methods, 2018, 16(10): 621−628. doi: 10.1002/lom3.10268
    [29] Annane S, St-Amand L, Starr M, et al. Contribution of transparent exopolymeric particles (TEP) to estuarine particulate organic carbon pool[J]. Marine Ecology Progress Series, 2015, 529: 17−34. doi: 10.3354/meps11294
    [30] Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51(1): 83−92. doi: 10.1016/j.dsr.2003.09.001
    [31] Ortega-Retuerta E, Reche I, Pulido-Villena E, et al. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean[J]. Marine Chemistry, 2009, 115(1/2): 59−65.
    [32] Bar-Zeev E, Berman-Frank I, Stambler N, et al. Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba[J]. Aquatic Microbial Ecology, 2009, 56(2/3): 217−225.
    [33] Bhaskar P V, Bhosle N B. Dynamics of transparent exopolymeric particles (TEP) and particle-associated carbohydrates in the Dona Paula bay, west coast of India[J]. Journal of Earth System Science, 2006, 115(4): 403−413. doi: 10.1007/BF02702869
    [34] Klein C, Claquin P, Pannard A, et al. Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems[J]. Marine Ecology Progress Series, 2011, 427: 13−27. doi: 10.3354/meps09049
    [35] Ramaiah N, Yoshikawa T, Furuya K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan[J]. Marine Ecology Progress Series, 2001, 212: 79−88. doi: 10.3354/meps212079
    [36] Azetsu-Scott K, Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741−748. doi: 10.4319/lo.2004.49.3.0741
    [37] Hong Ying, Smith W O, White A M. Studies on transparent exopolymer particles (TEP) produced in the Ross sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3): 368−376. doi: 10.1111/j.0022-3646.1997.00368.x
    [38] Morelle J, Schapira M, Françoise S, et al. Dynamics of exopolymeric carbon pools in relation with phytoplankton succession along the salinity gradient of a temperate estuary (France)[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 18−29. doi: 10.1016/j.ecss.2018.05.008
    [39] Prieto L, Navarro G, Cózar A, et al. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53(11/13): 1314−1328.
    [40] Wolfstein K, De Brouwer J F C, Stal L J. Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances[J]. Marine Ecology Progress Series, 2002, 245: 21−31. doi: 10.3354/meps245021
    [41] Heip C H R, Goosen N K, Herman P M J, et al. Production and consumption of biological particles in temperate tidal estuaries[J]. Oceanography and Marine Biology: An Annual Review, 1995, 33: 1−149.
    [42] Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom[J]. Journal of Plankton Research, 2000, 22(3): 485−497. doi: 10.1093/plankt/22.3.485
    [43] Malpezzi M A, Sanford L P, Crump B C. Abundance and distribution of transparent exopolymer particles in the estuarine turbidity maximum of Chesapeake Bay[J]. Marine Ecology Progress Series, 2013, 486: 23−35. doi: 10.3354/meps10362
    [44] Muylaert K, Sabbe K, Vyverman W. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium)[J]. Estuarine, Coastal and Shelf Science, 2000, 50(5): 673−687. doi: 10.1006/ecss.2000.0590
    [45] Kiørboe T. Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs[M]. London: Academic Press, 1993, 29: 1−72.
    [46] Hobson L A, McQuoid M R. Temporal variations among planktonic diatom assemblages in a turbulent environment of the southern Strait of Georgia, British Columbia, Canada[J]. Marine Ecology Progress Series, 1997, 150: 263−274. doi: 10.3354/meps150263
    [47] 刘子琳, 潘建明, 陈忠元. 南大洋浮游植物现存量对颗粒有机碳的贡献[J]. 海洋科学, 2004, 28(5): 44−49. doi: 10.3969/j.issn.1000-3096.2004.05.010

    Liu Zilin, Pan Jianming, Chen Zhongyuan. Contribution of phytoplankton standing stock for the particulate organic carbon in the Southern Ocean[J]. Marine Sciences, 2004, 28(5): 44−49. doi: 10.3969/j.issn.1000-3096.2004.05.010
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  66
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2020-11-08
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回