留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同MSS模型及其北极海冰干舷的多时空差异分析

董昭顷 路晓庆 石立坚 林明森 曾韬

董昭顷,路晓庆,石立坚,等. 不同MSS模型及其北极海冰干舷的多时空差异分析[J]. 海洋学报,2021,43(7):183–193 doi: 10.12284/hyxb2021109
引用本文: 董昭顷,路晓庆,石立坚,等. 不同MSS模型及其北极海冰干舷的多时空差异分析[J]. 海洋学报,2021,43(7):183–193 doi: 10.12284/hyxb2021109
Dong Zhaoqing,Lu Xiaoqing,Shi Lijian, et al. Multi temporal and spatial difference analysis of various MSS models and Arctic sea ice freeboard[J]. Haiyang Xuebao,2021, 43(7):183–193 doi: 10.12284/hyxb2021109
Citation: Dong Zhaoqing,Lu Xiaoqing,Shi Lijian, et al. Multi temporal and spatial difference analysis of various MSS models and Arctic sea ice freeboard[J]. Haiyang Xuebao,2021, 43(7):183–193 doi: 10.12284/hyxb2021109

不同MSS模型及其北极海冰干舷的多时空差异分析

doi: 10.12284/hyxb2021109
基金项目: 国家重点研发计划(2018YFC1407200,2018YFC1407206);南极重点海域对气候变化的响应和影响专项(IRASCC2020-2022-No.01-01-03)
详细信息
    作者简介:

    董昭顷(1997-),男,广东省汕头市人,主要从事海洋遥感研究。E-mail:13414937026@163.com

    通讯作者:

    路晓庆,工程师,主要从事海洋遥感研究。E-mail:qingxl@mail.nsoas.org.cn

  • 中图分类号: P731.15;P715

Multi temporal and spatial difference analysis of various MSS models and Arctic sea ice freeboard

  • 摘要: 基于2017年4月、2018年4月和2019年4月的CryoSat-2 L1B数据,比较分析了UCL13、DTU10、DTU13、DTU15和DTU18 5种不同平均海表面高度(MSS)模型及其反演的北极海冰干舷的多时空尺度差异。以UCL13为基准,对比分析不同MSS模型的差异和所反演的海冰干舷的差异,实验结果表明,不同MSS模型之间的平均绝对偏差范围为0.19~0.26 m,标准差范围为0.55~0.57 m,其中DTU18与UCL13的差异最小。以UCL13为基准,其他4种MSS模型反演的海冰干舷的平均绝对偏差为0.50~0.79 cm,标准差范围为1.17~1.74 cm。通过与冰桥计划(Operation IceBridge,OIB)机载数据相比,5种MSS模型反演的海冰干舷的相关系数范围为0.70~0.71,均方根误差范围为7.7~7.8 cm。故不同MSS模型之间的偏差对整个北极地区的海冰干舷反演的影响较小,偏差以相同的方式影响冰间水道和浮冰高度测量,因此相互抵消,但在冰间水道分布稀疏的区域,如加拿大群岛北部和拉普捷夫海区域,不同MSS模型反演的海冰干舷差异较大。
  • 图  1  不同MSS模型模拟的空间分布

    Fig.  1  Spatial distribution of different mean sea surface height models

    图  2  OIB于2017年4月、2018年4月和2019年4月的飞行路线

    Fig.  2  Flight lines of OIB for April 2017, April 2018 and April 2019

    图  3  反演海冰厚度的技术流程

    Fig.  3  Technical flowchart of sea ice thickness retrieval

    图  4  UCL13和DTU系列MSS模型的平均海平面高度沿轨差异(a,b)和沿轨水深(c,d)

    a, c. 轨道号47928;b, d. 轨道号47986

    Fig.  4  Track difference of mean sea surface height (a, b) between UCL13 and series of DTU MSS models as well as bathymetric chart (c, d)

    a, c. Track number 47928; b, d. track number 47986

    图  5  UCL13和DTU MSS系列模型的平均海平面高度网格差异

    Fig.  5  Grid differences of mean sea surface height between UCL13 and series of DTU MSS models

    图  6  UCL13和DTU系列MSS模型的网格差异直方图

    Fig.  6  Histogram of grid differences between UCL13 and series of DTU MSS models

    图  7  5种MSS模型反演的北极海冰干舷空间分布

    Fig.  7  Spatial distribution of Arctic sea ice freeboard retrieved by five MSS models

    图  8  UCL13和DTU系列MSS模型的北极海冰干舷沿轨差异直方图(a,b)和箱线图(c,d)

    a, c. 轨道号47928;b, d. 轨道号47986

    Fig.  8  Track difference of Arctic sea ice freeboard (a, b) between UCL13 and series of DTU MSS models as well as boxplot (c, d)

    a, c. track number 47928; b, d. track number 47986

    图  9  UCL13和DTU系列MSS模型的北极海冰干舷网格差异

    a, e, i. UCL13-DTU10;b, f, j. UCL13-DTU13;c, g, k. UCL13-DTU15;d, h, l. UCL13-DTU18;a–d. 2019年4月;e–h. 2018年4月;i–l. 2017年4月

    Fig.  9  Grid differences of Arctic sea ice freeboard between UCL13 and series of DTU MSS models

    a, e, i. UCL13-DTU10; b, f, j. UCL13-DTU13; c, g, k. UCL13-DTU15; d, h, l. UCL13-DTU18. a–d. April 2019; e–h. April 2018; i–l. April 2017

    图  10  5种不同MSS模型反演的海冰干舷与实测OIB数据的验证

    Fig.  10  Validation of sea ice freeboard retrieved from five different MSS models and measured OIB data

    表  1  UCL13和DTU系列MSS模型的北极海冰干舷网格差异统计表

    Tab.  1  Grid differences statistics of Arctic sea ice freeboard between UCL13 and series of DTU MSS models

    对比网络平均绝对偏差/标准差(单位:m)
    2017年4月2018年4月2019年4月
    UCL13−DTU100.006 9/0.017 40.007 0/0.014 90.007 9/0.016 8
    UCL13−DTU130.006 4/0.017 30.006 3/0.014 00.007 2/0.015 8
    UCL13−DTU150.005 4/0.015 80.005 2/0.012 70.005 7/0.013 7
    UCL13−DTU180.005 2/0.014 50.005 0/0.011 70.005 5/0.012 8
    下载: 导出CSV
  • [1] Thomas D N, Dieckmann G S. Sea Ice[M]. 2nd ed. Ames, Iowa: Wiley-Blackwell, 2010.
    [2] Xu Shiming, Zhou Lu, Liu Jiping, et al. Data synergy between altimetry and L-band passive microwave remote sensing for the retrieval of sea ice parameters—A theoretical study of methodology[J]. Remote Sensing, 2017, 9(10): 1079. doi: 10.3390/rs9101079
    [3] Arneth A, Barbosa H, Benton T, et al. Summary for Policymakers[M]. Geneva: The Intergovernmental Panel on Climate Change, 2019.
    [4] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
    [5] 季青. 基于卫星测高技术的北极海冰厚度时空变化研究[D]. 武汉: 武汉大学, 2015.

    Ji Qing. Study on spatial-temporal change of Arctic sea ice thickness based on satellite altimetry[D]. Wuhan: Wuhan University, 2015.
    [6] 沈校熠. 基于CryoSat-2的海冰厚度反演方法研究[D]. 南京: 南京大学, 2018.

    Shen Xiaoyi. Research on CryoSat-2 sea ice thickness retrieval method[D]. Nanjing: Nanjing University, 2018.
    [7] Paul S, Hendricks S, Ricker R, et al. Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA climate change initiative[J]. The Cryosphere, 2018, 12(7): 2437−2460. doi: 10.5194/tc-12-2437-2018
    [8] European Space Agency. CryoSat-2 product handbook[EB/OL]. (2020−11−23)[2020−12−01]. http://science-pds.cryosat.esa.int/.
    [9] Skourup H, Farrell S L, Hendricks S, et al. An assessment of state-of-the-art mean sea surface and geoid models of the Arctic Ocean: Implications for sea ice freeboard retrieval[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8593−8613. doi: 10.1002/2017jc013176
    [10] Ridout A. New mean sea surface for the CryoSat-2 L2 SAR chain[R]. Tech Note C2-TN-UCL-BC-0003 Issue 1.0. London, UK: CPOM, University College London.
    [11] Andersen O B. The DTU10 global gravity field and mean sea surface–improvements in the Arctic[C]//Second International Symposium of the Gravity Field of the Earth (IGFS2). Fairbanks, Alaska, 2010.
    [12] Andersen O, Knudsen P, Stenseng L. The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 years of satellite altimetry[M]//Jin Shuanggen, Barzaghi R. IGFS 2014. Cham: Springer, 2015: 111–121.
    [13] Andersen O B, Stenseng L, Piccioni G, et al. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface[C]//Abstract from ESA Living Planet Symposium 2016. Prague: Czech Republic, 2016.
    [14] Andersen O, Knudsen P, Stenseng L. A New DTU18 MSS mean sea surface–improvement from SAR altimetry[C]//25 Years of Progress in Radar Altimetry Symposium. Portugal, 2018.
    [15] 张晰, 赵全芳, 孟俊敏, 等. 适用于Ku波段雷达高度计海冰干舷高度反演的积雪校正方法[J]. 海洋技术学报, 2020, 39(2): 1−9.

    Zhang Xi, Zhao Quanfang, Meng Junmin, et al. Snow correction method for sea ice freeboard retrieval applied to Ku Band radar altimeters[J]. Journal of Ocean Technology, 2020, 39(2): 1−9.
    [16] Li Mengmeng, Ke Changqing, Xie Hongjie, et al. Arctic sea ice thickness retrievals from CryoSat-2: Seasonal and interannual comparisons of three different products[J]. International Journal of Remote Sensing, 2020, 41(1): 152−170. doi: 10.1080/01431161.2019.1637961
    [17] Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
    [18] Ricker R, Hendricks S, Helm V, et al. Sensitivity of CryoSat-2 arctic sea-ice freeboard and thickness on radar-waveform interpretation[J]. The Cryosphere, 2014, 8(4): 1607−1622. doi: 10.5194/tc-8-1607-2014
    [19] Shen Xiaoyi, Similä M, Dierking W, et al. A new retracking algorithm for retrieving sea ice freeboard from CryoSat-2 radar altimeter data during winter–spring transition[J]. Remote Sensing, 2019, 11(10): 1194. doi: 10.3390/rs11101194
    [20] Armitage T W K, Ridout A L. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge[J]. Geophysical Research Letters, 2015, 42(16): 6724−6731. doi: 10.1002/2015gl064823
    [21] Tilling R L, Ridout A, Shepherd A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data[J]. Advances in Space Research, 2018, 62(6): 1203−1225. doi: 10.1016/j.asr.2017.10.051
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  113
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 修回日期:  2021-04-12
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回