留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全和谐型浅水方程的有限体积海啸数值模型开发与应用

周文 王培涛 王岗 于福江 郑金海 梁秋华

周文,王培涛,王岗,等. 基于全和谐型浅水方程的有限体积海啸数值模型开发与应用[J]. 海洋学报,2021,43(5):27–37 doi: 10.12284/hyxb2021095
引用本文: 周文,王培涛,王岗,等. 基于全和谐型浅水方程的有限体积海啸数值模型开发与应用[J]. 海洋学报,2021,43(5):27–37 doi: 10.12284/hyxb2021095
Zhou Wen,Wang Peitao,Wang Gang, et al. Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations[J]. Haiyang Xuebao,2021, 43(5):27–37 doi: 10.12284/hyxb2021095
Citation: Zhou Wen,Wang Peitao,Wang Gang, et al. Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations[J]. Haiyang Xuebao,2021, 43(5):27–37 doi: 10.12284/hyxb2021095

基于全和谐型浅水方程的有限体积海啸数值模型开发与应用

doi: 10.12284/hyxb2021095
基金项目: 国家重点研发计划(2017YFC1404205,2018YFC1407000);国家自然科学基金面上项目(51579090);中央高校基本科研业务费(2019B12214)
详细信息
    作者简介:

    周文(1995-),男,江苏省靖江市人,主要从事海啸数值模型开发研究。E-mail:wenzhou_hhu@hhu.edu.cn

    通讯作者:

    王岗(1982-),男,河北省张家口市人,博士,副教授,主要从事港湾共振、水波模拟及海啸与洪水风险评估研究。E-mail:gangwang@hhu.edu.cn

  • 中图分类号: TV139.2

Development and application of a finite volume tsunami numerical model based on the well-balanced shallow water equations

  • 摘要: 数值模拟作为海啸预报的主要研究方法在海啸预警中起着关键作用。本文采用Godunov格式的有限体积方法,使用MUSCL-Hancock格式,并利用HLLC Riemann近似求解器计算单元界面上的流体通量,建立了球坐标系下二阶精度的海啸数值模型。模型所基于的全和谐型浅水方程保证了数值的稳定性,而地形重构方法实现了干湿边界的精准模拟。本文模拟了2015年9月16日智利Mw8.3级地震海啸,通过与智利近岸14个测站和环太平洋20个DART浮标实测数据比较,验证了模型对实际越洋海啸模拟预报的能力。
  • 图  1  地形重构示意

    Fig.  1  Local topography reconstruction

    图  2  边界条件示意图

    Fig.  2  Sketch of boundary condition

    图  3  地震引起的海表面初始变形

    Fig.  3  Initial sea surface deformation induced by the earthquake

    图  4  智利区域海啸和泛太平洋海啸模拟范围及DART浮标与智利近岸测站位置

    Fig.  4  Domains of Chile regional tsunami and the Pacific tsunami and the location of DART buoys and coastal tide-gauge stations

    图  5  智利近岸测站波面过程与模拟对比

    Fig.  5  Time histories of observation and simulation at Chile coastal tide-gauge stations

    图  6  地震后越洋海啸瞬时波面分布

    Fig.  6  Snapshots of simulated tsunami wavefields after the earthquake

    图  7  海啸先导波到达时间等值线图

    Fig.  7  Contours of the arrival time for the leading tsunami wave

    图  8  DART海啸浮标实测波面过程与模拟结果对比

    Fig.  8  Comparisons of the free surface elevation between DART buoys and simulations

    图  9  智利海啸在太平洋的最大波幅分布

    Fig.  9  Distribution of maximum wave amplitude in the Pacific for Chile tsunami

    表  1  智利地震断层参数

    Tab.  1  Fault parameters of Chile earthquake

    断层参数参数值
    震源位置31.57°S, 71.67°W
    震源深度22.4 km
    断层长度212 km
    断层宽度79 km
    倾角19°
    滑动角83°
    走向角353°
    平均滑移量6.3 m
    下载: 导出CSV

    表  2  智利近岸测站海啸先导波到达时间和波幅模拟与实测比较

    Tab.  2  Comparisons of simulation and observation of the arrival time and amplitude for the leading wave at Chile coastal tidal-gauge stations

    测站名称位置到达时间先导波波幅
    模拟/min实测/min相对误差模拟/cm实测/cm相对误差
    COQUIMBO CL30.0°S,71.3°W283212.5%104.096.96.8%
    SAN ANTONIO CL33.6°S,71.6°W303821.1%73.465.311.0%
    BUCALEMU CL34.6°S,72.0°W414916.3%48.546.93.3%
    HUASCO CL28.5°S,71.2°W303514.3%46.946.21.5%
    CONSTITUCION CL35.4°S,72.5°W536315.9%68.649.727.6%
    CHANARAL CL26.4°S,70.6°W57616.6%41.842.51.6%
    TALCAHUANO CL36.7°S,73.1°W1041083.7%43.444.01.4%
    TALTAL CL25.4°S,70.5°W67670%18.819.53.6%
    JUAN FERNANDEZ33.6°S,78.8°W63604.8%45.440.99.9%
    CORRAL CL39.9°S,73.4°W11213215.2%26.124.46.5%
    TOCOPILLA CL22.1°S,70.2°W93921.1%12.010.810.0%
    SAN FELIX CL26.3°S,80.1°W80811.2%23.822.65.0%
    MATARANI PE17.0°S,72.1°W1411400.7%13.313.94.3%
    CALLAO LA-PUNTA PE12.1°S,77.2°W2062185.5%23.120.312.1%
    下载: 导出CSV

    表  3  DART浮标海啸先导波到达时间和波幅模拟与实测比较

    Tab.  3  Comparisons of simulation and observation of the arrival time and amplitude for the leading wave at DART buoys

    浮标号位置到达时间先导波波幅
    模拟/min实测/min相对误差模拟/cm实测/cm相对误差
    3240226.7°S,74.0°W463915.2%9.310.07.0%
    3240120.5°S,73.4°W103966.8%5.55.17.3%
    3241218.0°S,86.4°W1741711.7%6.36.13.2%
    324115.0°N,90.9°W3983941.0%2.51.924.0%
    4341311.0°N,100.1°W4764730.6%1.91.426.3%
    4341216.0°N,107.0°W5605600%2.51.924.0%
    4641139.3°N,127.1°W8378390.2%1.30.838.5%
    4640742.7°N,127.8°W8748760.2%1.11.315.4%
    4640445.8°N,128.8°W9109100%1.00.730.0%
    4640955.3°N,148.5°W1 0301 0340.4%1.21.833.3%
    4640352.7°N,157.0°W1 0321 0380.6%1.41.926.3%
    4640849.6°N,169.9°W1 0631 0730.9%1.62.227.3%
    4641348.0°N,174.2°W1 0741 0820.7%1.31.827.8%
    5140719.6°N,156.5°W8728780.7%1.81.95.3%
    514259.5°S,176.3°W8798911.3%1.40.842.9%
    524065.3°S,165.0°E1 0751 0911.5%0.30.425.0%
    5240119.3°N,155.8°E1 2201 2381.5%1.31.023.1%
    5240211.9°N,153.9°E1 2241 2421.4%1.10.736.4%
    524034.0°N,145.5°E1 3001 3181.4%0.80.362.5%
    2141449.0°N,178.2°E1 1131 1210.7%1.11.421.4%
    下载: 导出CSV
  • [1] Barrientos S E, Ward S N. The 1960 Chile earthquake: Inversion for slip distribution from surface deformation[J]. Geophysical Journal International, 1990, 103(3): 589−598. doi: 10.1111/j.1365-246X.1990.tb05673.x
    [2] Bernard E N, Meinig C. History and future of deep-ocean tsunami measurements[C]//Oceans'11 MTS/IEEE Kona. Waikoloa, HI, USA: IEEE, 2011: 1−7.
    [3] 董杰, 田士政, 武文, 等. 全球海啸预警系统发展及其对我国的启示[J]. 海洋通报, 2019, 38(4): 368−378.

    Dong Jie, Tian Shizheng, Wu Wen, et al. The development of global tsunami warning systems and their enlightenments to China[J]. Marine Science Bulletin, 2019, 38(4): 368−378.
    [4] Mandli K T, Ahmadia A J, Berger M, et al. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs[J]. PeerJ Computer Science, 2016, 2: e68. doi: 10.7717/peerj-cs.68
    [5] Berger M J, George D L, LeVeque R J, et al. The GeoClaw software for depth-averaged flows with adaptive refinement[J]. Advances in Water Resources, 2011, 34(9): 1195−1206. doi: 10.1016/j.advwatres.2011.02.016
    [6] Kirby J T, Wei G, Chen Q, et al. FUNWAVE 1.0: Fully nonlinear Boussinesq wave model-documentation and user's manual[R]. Network, USA: University of Delaware, 1998.
    [7] Shi Fengyan, Kirby J T, Harris J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43−44: 36−51. doi: 10.1016/j.ocemod.2011.12.004
    [8] Yuan Ye, Shi Fengyan, Kirby J T, et al. FUNWAVE-GPU: Multiple-GPU acceleration of a Boussinesq-type wave model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(5): e2019MS001957.
    [9] Yamazaki Y, Kowalik Z, Cheung K F. Depth-integrated, non-hydrostatic model for wave breaking and run-up[J]. International Journal for Numerical Methods in Fluids, 2009, 61(5): 473−497. doi: 10.1002/fld.1952
    [10] Zhao Binbin, Duan Wenyang, Webster W C. Tsunami simulation with Green-Naghdi theory[J]. Ocean Engineering, 2011, 38(2/3): 389−396.
    [11] Titov V V, Gonzalez F I. Implementation and testing of the Method of Splitting Tsunami (MOST) model[R]. Washington, USA: Pacific Marine Environmental Laboratory, NOAA, 1997.
    [12] 余锡平. 近岸水波的数值方法[M]. 北京: 科学出版社, 2017.

    Yu Xiping. Numerical Methods in Nearshore Wave[M]. Beijing: Science Press, 2017.
    [13] Toro E F. Shock-Capturing Methods for Free-Surface Shallow Flows[M]. Chichester, UK: John Wiley & Sons Inc, 2001.
    [14] Alias N A, Liang Qiuhua, Kesserwani G. A Godunov-type scheme for modelling 1D channel flow with varying width and topography[J]. Computers & Fluids, 2011, 46(1): 88−93.
    [15] Xia Xilin, Liang Qiuhua. A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations[J]. Advances in Water Resources, 2018, 117: 87−97. doi: 10.1016/j.advwatres.2018.05.004
    [16] Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. Siam Review, 1983, 25(1): 35−61. doi: 10.1137/1025002
    [17] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25−34. doi: 10.1007/BF01414629
    [18] Liang Qiuhua, Borthwick A G L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography[J]. Computers & Fluids, 2009, 38(2): 221−234.
    [19] Baba T, Allgeyer S, Hossen J, et al. Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change[J]. Ocean Modelling, 2017, 111: 46−54. doi: 10.1016/j.ocemod.2017.01.002
    [20] Van Leer B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135(2): 229−248. doi: 10.1006/jcph.1997.5704
    [21] Liang Qiuhua. Flood simulation using a well-balanced shallow flow model[J]. Journal of Hydraulic Engineering, 2010, 136(9): 669−675. doi: 10.1061/(ASCE)HY.1943-7900.0000219
    [22] Liang Qiuhua, Marche F. Numerical resolution of well-balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873−884. doi: 10.1016/j.advwatres.2009.02.010
    [23] Steketee J A. On volterra’s dislocations in a semi-infinite elastic medium[J]. Canadian Journal of Physics, 1958, 36(2): 192−205. doi: 10.1139/p58-024
    [24] Steketee J A. Some geophysical applications of the elasticity theory of dislocations[J]. Canadian Journal of Physics, 1958, 36(9): 1168−1198. doi: 10.1139/p58-123
    [25] Kajiura K. The leading wave of a tsunami[J]. Bulletin of the Earthquake Research Institute, 1963, 41(3): 535−571.
    [26] Mansinha L, Smylie D E. The displacement field of inclined faults[J]. Bulletin of the Seismological Society of America, 1971, 61(5): 1433−1440.
    [27] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135−1154.
    [28] 于福江, 王培涛, 赵联大, 等. 2010年智利地震海啸数值模拟及其对我国沿海的影响分析[J]. 地球物理学报, 2011, 54(4): 918−925.

    Yu Fujiang, Wang Peitao, Zhao Lianda, et al. Numerical simulation of 2010 Chile tsunami and its impact on Chinese coasts[J]. Chinese Journal of Geophysics, 2011, 54(4): 918−925.
    [29] 王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9): 3088−3096. doi: 10.6038/j.issn.0001-5733.2012.09.026

    Wang Peitao, Yu Fujiang, Zhao Lianda, et al. Numerical analysis of tsunami propagating generated by the Japan Mw9.0 earthquake on Mar. 11 in 2011 and its impact on China coasts[J]. Chinese Journal of Geophysics, 2012, 55(9): 3088−3096. doi: 10.6038/j.issn.0001-5733.2012.09.026
    [30] 闪迪, 王培涛, 任智源, 等. 有限断层模型在2015年9月16日智利Mw8.3级地震海啸数值模拟中的应用与评估[J]. 海洋学报, 2017, 39(11): 49−60.

    Shan Di, Wang Peitao, Ren Zhiyuan, et al. Application and evaluation of the 16 September 2015 Illapel, Chile Mw8.3 earthquake finite fault rupture model from numerical simulation[J]. Haiyang Xuebao, 2017, 39(11): 49−60.
    [31] Wu Wennan, Zhao Li, Wu Y M. Empirical relationships between aftershock zone dimensions and moment magnitudes for plate boundary earthquakes in Taiwan[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 424−436. doi: 10.1785/0120120173
    [32] Hayes G P, Myers E K, Dewey J W, et al. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015[R]. USA: USGS, 2016.
    [33] Kanamori H, Rivera L. Source inversion of W phase: Speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1): 222−238. doi: 10.1111/j.1365-246X.2008.03887.x
    [34] Glimsdal S, Pedersen G K, Harbitz C B, et al. Dispersion of tsunamis: Does it really matter?[J]. Natural Hazards and Earth System Sciences, 2013, 13(6): 1507−1526. doi: 10.5194/nhess-13-1507-2013
    [35] Watada S, Kusumoto S, Satake K. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(5): 4287−4310. doi: 10.1002/2013JB010841
    [36] 王岗, 胡见, 王培涛, 等. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5): 15−23.

    Wang Gang, Hu Jian, Wang Peitao, et al. Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge[J]. Haiyang Xuebao, 2018, 40(5): 15−23.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  85
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-10-19
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回