The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene
-
摘要: 本文采用国际大洋发现计划(IODP)第368航次U1501站位井深264.0~331.1 m的样品,通过有孔虫壳体氧同位素地层和锶同位素定年,得出该段井深年龄为晚渐新世−早中新世20.3~32.0 Ma(地震反射不整合面T60的底部年龄在28~30.5 Ma左右)。T60构造运动之后,岩芯沉积物中有机碳含量、底栖有孔虫壳体稳定碳同位素δ13C、浮游与底栖有孔虫碳同位素差值Δδ13CP-B指示海水表层生产力的降低;碳酸钙含量、有机碳/氮比值反映了陆源物质输入的减少;结合浮游有孔虫相对丰度以及底栖有孔虫的属种组合变化,共同揭示了南海北部在晚渐新世−早中新世时期,区域构造沉降运动导致了U1501站位在T60之后古水深逐步加深、离岸距离变远,相关结论从微体古生物学角度为认识T60构造事件及其沉积环境变化提供了科学证据。Abstract: Samples of International Ocean Discovery Program (IODP) 368 Site U1501 between core depth 264.0−331.1 m were collected and analyzed in this study. Through foraminifera oxygen isotopic stratigraphy and Sr isotopic dating, the age of this depth interval ranges from early Miocene 20.3 Ma to late Oligocene 32.0 Ma (with seismic reflector T60 bottom age at 28−30.5 Ma). After T60 event, 3 proxies including the content of organic carbon, stable δ13C of benthic foraminifera and the difference of δ13C between planktonic and benthic foraminifera (Δδ13CP-B) showed the sea surface paleo-productivity weakened; meanwhile, the carbonate content and the organic carbon/nitrogen ratio revealed the terrigenous input decreased. Combined with the changes of relative abundance of planktonic foraminifera and the benthic foraminifera faunal combinations, these paleo-environmental proxies implies that during late Oligocene to early Miocene, the regional tectonic subsidence in the northern South China Sea leaded to the deepening of the paleo-water depth and increasing the offshore distance at Site U1501 after the T60 event. These conclusions provide micropaleontology evidence for better understanding of T60 tectonic event and subsequent sedimentary environment researches.
-
Key words:
- the northern South China Sea /
- T60 /
- paleo-water depth /
- surface paleo-productivity
-
表 1 U1501站位常见底栖有孔虫属及其对应水深分布
Tab. 1 The identified benthic foraminifera and its distribution with water depth at Site U1501
有孔虫属 环境 水深分布 Siphotextularia spp. 大陆架−大陆坡 <3 000 m Dentalina spp. 大陆架−大陆坡 <3 000 m Bolivina spp. 大陆架−大陆坡 <3 000 m Bulimina spp. 大陆架−大陆坡 <3 000 m Cibicidoides spp. 大陆架、大陆坡、深海 所有水深 Spiroplectammina spp. 大陆坡−深海 >200 m Oolina spp. 大陆坡 200~3 000 m Nodosaria spp. 大陆坡 200~3 000 m Melonis spp. 大陆坡 200~3 000 m Hormosina spp. 深海 >3 000 m -
[1] 张浩, 邵磊, 张功成, 等. 南海始新世海相地层分布及油气地质意义[J]. 地球科学—中国地质大学学报, 2015, 40(4): 660−670. doi: 10.3799/dqkx.2015.053Zhang Hao, Shao Lei, Zhang Gongcheng, et al. Distribution and petroleum geologic significance of eocene marine strata in the South China Sea[J]. Earth Sciences − Journal of China University of Geosciences, 2015, 40(4): 660−670. doi: 10.3799/dqkx.2015.053 [2] 马尔古利斯J C. 地震反射界面的地质学本质[J]. 苍玉清, 译. 化学地质, 1988(6): 48−53.Margulies J C. Geological essence of seismic reflection interface[J]. Cang Yuqing, trans. Chemical Geology, 1988(6): 48−53. [3] Larsen H C, Jian Z M, Zarikian C A, et al. Site U1501[EB/OL]. (2018−09−28) [2020−09−01]. https://doi.org/10.14379/iodp.proc.367368.105.2018. [4] 邵磊, 李献华, 汪品先, 等. 南海渐新世以来构造演化的沉积记录——ODP 1148站深海沉积物中的证据[J]. 地球科学进展, 2004, 19(4): 539−544. doi: 10.3321/j.issn:1001-8166.2004.04.008Shao Lei, Li Xianhua, Wang Pinxian, et al. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene−evidence from deep sea sediments of ODP site 1148[J]. Advances in Earth Science, 2004, 19(4): 539−544. doi: 10.3321/j.issn:1001-8166.2004.04.008 [5] 唐松, 邵磊, 吴国瑄, 等. 南海北部ODP 1148站沉积物特征及其来源[J]. 海洋地质动态, 2009, 25(7): 7−13, 36. doi: 10.3969/j.issn.1009-2722.2009.07.002Tang Song, Shao Lei, Wu Guoxuan, et al. Characteristics and sources of sediments from ODP 1148 in the north of the South China Sea[J]. Marine Geology Letters, 2009, 25(7): 7−13, 36. doi: 10.3969/j.issn.1009-2722.2009.07.002 [6] Jian Zhimin, Jin Haiyan, Michael A K, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881−885. doi: 10.1093/nsr/nwz084 [7] 成鑫荣, 汪品先, 黄宝琦, 等. 南海表层沉积中有孔虫壳体的碳同位素研究及其意义[J]. 科学通报, 2005, 50(1): 162−52.Cheng Xinrong, Wang Pinxian, Huang Baoqi, et al. Carbon isotopic record of foraminifers in surface sediments from the South China Sea and its significance[J]. Chinese Science Bulletin, 2005, 50(1): 162−52. [8] 韦刚健, 桂训唐, 于津生, 等. 南海第四纪海水Sr同位素组成演化[J]. 海洋地质与第四纪地质, 1996, 16(2): 15−21.Wei Gangjian, Gui Xuntang, Yu Jinsheng, et al. Quaternary Sr isotopic records of the seawater in the South China Sea[J]. Marine Geology and Quaternary Geology, 1996, 16(2): 15−21. [9] Weldeab S, Emeis K C, Hemleben C, et al. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the eastern Mediterranean Sea: Evidence from 143Nd/144Nd and 87Sr/86Sr ratios[J]. Chemical Geology, 2002, 186(1/2): 139−149. [10] Ge Lu, Jiang Shaoyong. Sr isotopic compositions of cold seep carbonates from the South China Sea and the Panoche Hills (California, USA) and their significance in palaeooceanography[J]. Journal of Asian Earth Sciences, 2013, 65: 34−41. doi: 10.1016/j.jseaes.2012.10.016 [11] 胡作维, 李云, 李北康, 等. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037Hu Zuowei, Li Yun, Li Beikang, et al. An overview of the strontium isotopic composition of phanerozoic seawater[J]. Advances in Earth Sciences, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037 [12] 翦知湣, 王律江, Kien M. 南海晚第四纪表层古生产力与东亚季风变迁[J]. 第四纪研究, 1999(1): 32−39. doi: 10.3321/j.issn:1001-7410.1999.01.004Jian Zhimin, Wang Lüjiang, Kien M. Late Quaternary surface paleoproductivity and variations of the East Asian monsoon in the South China Sea[J]. Quaternary Sciences, 1999(1): 32−39. doi: 10.3321/j.issn:1001-7410.1999.01.004 [13] 房殿勇, 翦知湣, 汪品先. 南沙海区南部近30 ka来的古生产力记录[J]. 科学通报, 2000, 45(13): 1227−1230. doi: 10.1007/BF02886085Fang Dianyong, Jian Zhimin, Wang Pinxian. Paleoproductivity records for the past 30 ka in the southern Nansha area, the South China Sea[J]. Chinese Science Bulletin, 2000, 45(13): 1227−1230. doi: 10.1007/BF02886085 [14] 陈晓良, 赵泉鸿, 翦知湣. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义[J]. 海洋地质与第四纪地质, 2002, 2(2): 69−74.Chen Xiaoliang, Zhao Quanhong, Jian Zhimin. Carbonate content changes since the Miocene and paleoenvironmental implications, ODP site 1148, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 2(2): 69−74. [15] 钱君龙, 吉磊, 王苏民. 若尔盖RM孔有机碳、总氮和碳氮比值的垂直分布[J]. 山地研究, 1996, 14(4): 244−246.Qian Junlong, Ji Lei, Wang Sumin. Vertical distribution of total organic carbon, total nitrogen and C/N of core RM in zoige[J]. Journal of Mountain Research, 1996, 14(4): 244−246. [16] Wade B S, Berggren W A, Olsson R K. The biostratigraphy and paleobiology of oligocene planktonic foraminifera from the equatorial Pacific Ocean (ODP Site 1218)[J]. Marine Micropaleontology, 2007, 62(3): 167−179. doi: 10.1016/j.marmicro.2006.08.005 [17] Mackensen A, Bickert T. Stable carbon isotopes in benthic foraminifera: Proxies for deep and bottom water circulation and new production[M]//Fischer G, Wefer G. Use of Proxies in Paleoceanography. Berlin: Springer, 1999: 229−254. [18] Altenbach A V, Pflaumann U, Schiebel R, et al. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon[J]. Journal of Foraminiferal Research, 1999, 29(3): 173−185. [19] Holbourn A, Henderson A S, MacLeod N. Atlas of Benthic Foraminifera[M]. Chichester: Blackwell Pub, 2013. [20] Jian Zhimin, Wang Yuejiang, Kienast M, et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40, 000 years[J]. Marine Geology, 1999, 156(1/4): 159−186. [21] Li Quanhong, Zhao Qianyu, Jian Zhimin. Deep waters and oceanic connection[M]//Wang P, Li Q. The South China Sea. Berlin: Springer, 2009. [22] Zachos J C, Dickens G R, Zeebe R E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279−283. doi: 10.1038/nature06588 [23] 李文宝, 王汝建, 万随. 沉积过程中有机碳及Globigerinoides ruber氧、碳同位素变化特征——以南海南部为例[J]. 沉积学报, 2017, 35(4): 730−739.Li Wenbao, Wang Rujian, Wan Sui. Changes of TOC and δ18O, δ13C from Globigerinoides ruber during the deposition process in the southern South China Sea[J]. Acta Sedimentologica Sinica, 2017, 35(4): 730−739. [24] Spezzaferri S. Planktonic foraminiferal paleoclimatic implications across the Oligocene−Miocene transition in the oceanic record (Atlantic, Indian and South Pacific)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114(1): 43−74. doi: 10.1016/0031-0182(95)00076-X [25] Gupta A K, Yuvaraja A, Prakasam M, et al. Evolution of the South Asian monsoon wind system since the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 160−167. doi: 10.1016/j.palaeo.2015.08.006 [26] Tian Jun, Ma Xiaolin, Zhou Jianhong, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene: Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal δ18O and δ13C records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382−391. doi: 10.1016/j.palaeo.2016.11.041 [27] 叶瑛, 柳志卿, 陈宁华, 等. 南海表层沉积物浮游有孔虫的氧碳同位素及其海洋学意义[J]. 浙江大学报(理学版), 2004, 31(1): 114−120.Ye Ying, Liu Zhiqing, Chen Ninghua, et al. Oxygen and carbon isotope composition of planktonic foraminifera in surface sediments from South China Sea and its oceanography significance[J]. Journal of Zhejiang University (Science Edition), 2004, 31(1): 114−120. [28] 葛倩, 孟宪伟, 初凤友, 等. 近3万年来南海北部碳酸盐旋回及古气候意义[J]. 海洋学研究, 2008, 26(1): 18−21. doi: 10.3969/j.issn.1001-909X.2008.01.003Ge Qian, Meng Xianwei, Chu Fengyou, et al. The carbonate cycles in the northern South China Sea during the last 30 ka and the paleoclimatic significance[J]. Journal of Marine Sciences, 2008, 26(1): 18−21. doi: 10.3969/j.issn.1001-909X.2008.01.003 [29] 李学杰, 刘坚, 陈芳, 等. 南海北部晚更新世以来的碳酸盐旋回[J]. 第四纪研究, 2008, 28(3): 431−436. doi: 10.3321/j.issn:1001-7410.2008.03.007Li Xuejie, Liu Jian, Chen Fang, et al. Carbonate cycles since late Pleistocene in the northern South China Sea[J]. Quaternary Sciences, 2008, 28(3): 431−436. doi: 10.3321/j.issn:1001-7410.2008.03.007 [30] Dang Haowen, Peng Nana, Jian Zhimin. A dataset of the Plio-Pleistocene at IODP site U1489: Benthic foraminifera stable carbon and oxygen isotopes, coarse fraction, and selected benthic foraminifera abundances[J]. Data in Brief, 2020, 28: 105020. doi: 10.1016/j.dib.2019.105020 [31] 赵小慧. 舟山潮间带底栖有孔虫种群分布及对海洋环境因子的生态响应[D]. 舟山: 浙江海洋大学, 2018.Zhao Xiaohui. Distribution of benthic foraminifera population in the intertidal zone of Zhoushan and its ecological response to marine environmental factors[D]. Hangzhou: Zhejiang Ocean University, 2018.