留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部晚渐新世与早中新世之交T60构造运动的古水深响应

王乙晶 金海燕 翦知湣 徐娟

王乙晶,金海燕,翦知湣,等. 南海北部晚渐新世与早中新世之交T60构造运动的古水深响应[J]. 海洋学报,2021,43(5):79–87 doi: 10.12284/hyxb2021093
引用本文: 王乙晶,金海燕,翦知湣,等. 南海北部晚渐新世与早中新世之交T60构造运动的古水深响应[J]. 海洋学报,2021,43(5):79–87 doi: 10.12284/hyxb2021093
Wang Yijing,Jin Haiyan,Jian Zhimin, et al. The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene[J]. Haiyang Xuebao,2021, 43(5):79–87 doi: 10.12284/hyxb2021093
Citation: Wang Yijing,Jin Haiyan,Jian Zhimin, et al. The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene[J]. Haiyang Xuebao,2021, 43(5):79–87 doi: 10.12284/hyxb2021093

南海北部晚渐新世与早中新世之交T60构造运动的古水深响应

doi: 10.12284/hyxb2021093
基金项目: 国家重点研发计划(2018YFE0202400);国家自然科学基金委员会−山东省人民政府海洋科学研究中心联合资助项目(U1606401);自然资源部全球变化与海气相互作用专项(GASI-GEOGE-04);国家自然科学基金(91428310,41630965)
详细信息
    作者简介:

    王乙晶(1995-),男,上海市人,主要从事古海洋与古环境方向研究。E-mail:hpwzc@163.com

    通讯作者:

    金海燕,副教授,主要从事微体古生物学研究。E-mail:jinhy@tongji.edu.cn

  • 中图分类号: P736

The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene

  • 摘要: 本文采用国际大洋发现计划(IODP)第368航次U1501站位井深264.0~331.1 m的样品,通过有孔虫壳体氧同位素地层和锶同位素定年,得出该段井深年龄为晚渐新世−早中新世20.3~32.0 Ma(地震反射不整合面T60的底部年龄在28~30.5 Ma左右)。T60构造运动之后,岩芯沉积物中有机碳含量、底栖有孔虫壳体稳定碳同位素δ13C、浮游与底栖有孔虫碳同位素差值Δδ13CP-B指示海水表层生产力的降低;碳酸钙含量、有机碳/氮比值反映了陆源物质输入的减少;结合浮游有孔虫相对丰度以及底栖有孔虫的属种组合变化,共同揭示了南海北部在晚渐新世−早中新世时期,区域构造沉降运动导致了U1501站位在T60之后古水深逐步加深、离岸距离变远,相关结论从微体古生物学角度为认识T60构造事件及其沉积环境变化提供了科学证据。
  • 图  1  IODP 368航次南海U1501站位

    Fig.  1  The location of Site U1501 of the IODP 368 in the South China Sea

    图  2  T60地震反射界面所在井深以及其上下深度镜下有孔虫保存度对比

    Fig.  2  The photos of foraminiferal fauna preservation under the microscope below and above the T60 depth

    图  3  U1501站有孔虫壳体Sr同位素年龄(井深范围为302.5~331.1 m)

    Fig.  3  The foraminifera Sr isotopic age calibration of Site U1501 (core depth ranges from 302.5 m to 331.1 m)

    图  4  U1501站位T60界面上下有机碳含量(a)、底栖有孔虫稳定碳同位素δ13C(b)以及浮游与底栖有孔虫δ13C差值(c)变化曲线

    Fig.  4  The variation of organic carbon content (a), benthic foraminifera δ13C (b) and the difference between planktonic and benthic foraminifera δ13C (c) below and above the T60 at Site U1501

    图  5  U1501站位 T60附近碳酸钙含量(a)、有机碳/氮比值(b)以及浮游有孔虫相对丰度变化(c)曲线

    Fig.  5  The variation of carbonate content (a)、carbon nitrogen ratio (b) and relative abundance of planktonic foraminifera (c) below and above the T60 at Site U1501

    图  6  U1501站位 T60界面附近底栖有孔虫群落组合的丰度变化

    Fig.  6  The variation of the abundance of benthic foraminifera community near the reflector T60 at Site U1501

    表  1  U1501站位常见底栖有孔虫属及其对应水深分布

    Tab.  1  The identified benthic foraminifera and its distribution with water depth at Site U1501

    有孔虫属环境水深分布
    Siphotextularia spp.大陆架−大陆坡<3 000 m
    Dentalina spp.大陆架−大陆坡<3 000 m
    Bolivina spp.大陆架−大陆坡<3 000 m
    Bulimina spp.大陆架−大陆坡<3 000 m
    Cibicidoides spp.大陆架、大陆坡、深海所有水深
    Spiroplectammina spp.大陆坡−深海>200 m
    Oolina spp.大陆坡200~3 000 m
    Nodosaria spp.大陆坡200~3 000 m
    Melonis spp.大陆坡200~3 000 m
    Hormosina spp.深海>3 000 m
    下载: 导出CSV
  • [1] 张浩, 邵磊, 张功成, 等. 南海始新世海相地层分布及油气地质意义[J]. 地球科学—中国地质大学学报, 2015, 40(4): 660−670. doi: 10.3799/dqkx.2015.053

    Zhang Hao, Shao Lei, Zhang Gongcheng, et al. Distribution and petroleum geologic significance of eocene marine strata in the South China Sea[J]. Earth Sciences − Journal of China University of Geosciences, 2015, 40(4): 660−670. doi: 10.3799/dqkx.2015.053
    [2] 马尔古利斯J C. 地震反射界面的地质学本质[J]. 苍玉清, 译. 化学地质, 1988(6): 48−53.

    Margulies J C. Geological essence of seismic reflection interface[J]. Cang Yuqing, trans. Chemical Geology, 1988(6): 48−53.
    [3] Larsen H C, Jian Z M, Zarikian C A, et al. Site U1501[EB/OL]. (2018−09−28) [2020−09−01]. https://doi.org/10.14379/iodp.proc.367368.105.2018.
    [4] 邵磊, 李献华, 汪品先, 等. 南海渐新世以来构造演化的沉积记录——ODP 1148站深海沉积物中的证据[J]. 地球科学进展, 2004, 19(4): 539−544. doi: 10.3321/j.issn:1001-8166.2004.04.008

    Shao Lei, Li Xianhua, Wang Pinxian, et al. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene−evidence from deep sea sediments of ODP site 1148[J]. Advances in Earth Science, 2004, 19(4): 539−544. doi: 10.3321/j.issn:1001-8166.2004.04.008
    [5] 唐松, 邵磊, 吴国瑄, 等. 南海北部ODP 1148站沉积物特征及其来源[J]. 海洋地质动态, 2009, 25(7): 7−13, 36. doi: 10.3969/j.issn.1009-2722.2009.07.002

    Tang Song, Shao Lei, Wu Guoxuan, et al. Characteristics and sources of sediments from ODP 1148 in the north of the South China Sea[J]. Marine Geology Letters, 2009, 25(7): 7−13, 36. doi: 10.3969/j.issn.1009-2722.2009.07.002
    [6] Jian Zhimin, Jin Haiyan, Michael A K, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881−885. doi: 10.1093/nsr/nwz084
    [7] 成鑫荣, 汪品先, 黄宝琦, 等. 南海表层沉积中有孔虫壳体的碳同位素研究及其意义[J]. 科学通报, 2005, 50(1): 162−52.

    Cheng Xinrong, Wang Pinxian, Huang Baoqi, et al. Carbon isotopic record of foraminifers in surface sediments from the South China Sea and its significance[J]. Chinese Science Bulletin, 2005, 50(1): 162−52.
    [8] 韦刚健, 桂训唐, 于津生, 等. 南海第四纪海水Sr同位素组成演化[J]. 海洋地质与第四纪地质, 1996, 16(2): 15−21.

    Wei Gangjian, Gui Xuntang, Yu Jinsheng, et al. Quaternary Sr isotopic records of the seawater in the South China Sea[J]. Marine Geology and Quaternary Geology, 1996, 16(2): 15−21.
    [9] Weldeab S, Emeis K C, Hemleben C, et al. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the eastern Mediterranean Sea: Evidence from 143Nd/144Nd and 87Sr/86Sr ratios[J]. Chemical Geology, 2002, 186(1/2): 139−149.
    [10] Ge Lu, Jiang Shaoyong. Sr isotopic compositions of cold seep carbonates from the South China Sea and the Panoche Hills (California, USA) and their significance in palaeooceanography[J]. Journal of Asian Earth Sciences, 2013, 65: 34−41. doi: 10.1016/j.jseaes.2012.10.016
    [11] 胡作维, 李云, 李北康, 等. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037

    Hu Zuowei, Li Yun, Li Beikang, et al. An overview of the strontium isotopic composition of phanerozoic seawater[J]. Advances in Earth Sciences, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037
    [12] 翦知湣, 王律江, Kien M. 南海晚第四纪表层古生产力与东亚季风变迁[J]. 第四纪研究, 1999(1): 32−39. doi: 10.3321/j.issn:1001-7410.1999.01.004

    Jian Zhimin, Wang Lüjiang, Kien M. Late Quaternary surface paleoproductivity and variations of the East Asian monsoon in the South China Sea[J]. Quaternary Sciences, 1999(1): 32−39. doi: 10.3321/j.issn:1001-7410.1999.01.004
    [13] 房殿勇, 翦知湣, 汪品先. 南沙海区南部近30 ka来的古生产力记录[J]. 科学通报, 2000, 45(13): 1227−1230. doi: 10.1007/BF02886085

    Fang Dianyong, Jian Zhimin, Wang Pinxian. Paleoproductivity records for the past 30 ka in the southern Nansha area, the South China Sea[J]. Chinese Science Bulletin, 2000, 45(13): 1227−1230. doi: 10.1007/BF02886085
    [14] 陈晓良, 赵泉鸿, 翦知湣. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义[J]. 海洋地质与第四纪地质, 2002, 2(2): 69−74.

    Chen Xiaoliang, Zhao Quanhong, Jian Zhimin. Carbonate content changes since the Miocene and paleoenvironmental implications, ODP site 1148, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 2(2): 69−74.
    [15] 钱君龙, 吉磊, 王苏民. 若尔盖RM孔有机碳、总氮和碳氮比值的垂直分布[J]. 山地研究, 1996, 14(4): 244−246.

    Qian Junlong, Ji Lei, Wang Sumin. Vertical distribution of total organic carbon, total nitrogen and C/N of core RM in zoige[J]. Journal of Mountain Research, 1996, 14(4): 244−246.
    [16] Wade B S, Berggren W A, Olsson R K. The biostratigraphy and paleobiology of oligocene planktonic foraminifera from the equatorial Pacific Ocean (ODP Site 1218)[J]. Marine Micropaleontology, 2007, 62(3): 167−179. doi: 10.1016/j.marmicro.2006.08.005
    [17] Mackensen A, Bickert T. Stable carbon isotopes in benthic foraminifera: Proxies for deep and bottom water circulation and new production[M]//Fischer G, Wefer G. Use of Proxies in Paleoceanography. Berlin: Springer, 1999: 229−254.
    [18] Altenbach A V, Pflaumann U, Schiebel R, et al. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon[J]. Journal of Foraminiferal Research, 1999, 29(3): 173−185.
    [19] Holbourn A, Henderson A S, MacLeod N. Atlas of Benthic Foraminifera[M]. Chichester: Blackwell Pub, 2013.
    [20] Jian Zhimin, Wang Yuejiang, Kienast M, et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40, 000 years[J]. Marine Geology, 1999, 156(1/4): 159−186.
    [21] Li Quanhong, Zhao Qianyu, Jian Zhimin. Deep waters and oceanic connection[M]//Wang P, Li Q. The South China Sea. Berlin: Springer, 2009.
    [22] Zachos J C, Dickens G R, Zeebe R E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279−283. doi: 10.1038/nature06588
    [23] 李文宝, 王汝建, 万随. 沉积过程中有机碳及Globigerinoides ruber氧、碳同位素变化特征——以南海南部为例[J]. 沉积学报, 2017, 35(4): 730−739.

    Li Wenbao, Wang Rujian, Wan Sui. Changes of TOC and δ18O, δ13C from Globigerinoides ruber during the deposition process in the southern South China Sea[J]. Acta Sedimentologica Sinica, 2017, 35(4): 730−739.
    [24] Spezzaferri S. Planktonic foraminiferal paleoclimatic implications across the Oligocene−Miocene transition in the oceanic record (Atlantic, Indian and South Pacific)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114(1): 43−74. doi: 10.1016/0031-0182(95)00076-X
    [25] Gupta A K, Yuvaraja A, Prakasam M, et al. Evolution of the South Asian monsoon wind system since the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 160−167. doi: 10.1016/j.palaeo.2015.08.006
    [26] Tian Jun, Ma Xiaolin, Zhou Jianhong, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene: Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal δ18O and δ13C records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382−391. doi: 10.1016/j.palaeo.2016.11.041
    [27] 叶瑛, 柳志卿, 陈宁华, 等. 南海表层沉积物浮游有孔虫的氧碳同位素及其海洋学意义[J]. 浙江大学报(理学版), 2004, 31(1): 114−120.

    Ye Ying, Liu Zhiqing, Chen Ninghua, et al. Oxygen and carbon isotope composition of planktonic foraminifera in surface sediments from South China Sea and its oceanography significance[J]. Journal of Zhejiang University (Science Edition), 2004, 31(1): 114−120.
    [28] 葛倩, 孟宪伟, 初凤友, 等. 近3万年来南海北部碳酸盐旋回及古气候意义[J]. 海洋学研究, 2008, 26(1): 18−21. doi: 10.3969/j.issn.1001-909X.2008.01.003

    Ge Qian, Meng Xianwei, Chu Fengyou, et al. The carbonate cycles in the northern South China Sea during the last 30 ka and the paleoclimatic significance[J]. Journal of Marine Sciences, 2008, 26(1): 18−21. doi: 10.3969/j.issn.1001-909X.2008.01.003
    [29] 李学杰, 刘坚, 陈芳, 等. 南海北部晚更新世以来的碳酸盐旋回[J]. 第四纪研究, 2008, 28(3): 431−436. doi: 10.3321/j.issn:1001-7410.2008.03.007

    Li Xuejie, Liu Jian, Chen Fang, et al. Carbonate cycles since late Pleistocene in the northern South China Sea[J]. Quaternary Sciences, 2008, 28(3): 431−436. doi: 10.3321/j.issn:1001-7410.2008.03.007
    [30] Dang Haowen, Peng Nana, Jian Zhimin. A dataset of the Plio-Pleistocene at IODP site U1489: Benthic foraminifera stable carbon and oxygen isotopes, coarse fraction, and selected benthic foraminifera abundances[J]. Data in Brief, 2020, 28: 105020. doi: 10.1016/j.dib.2019.105020
    [31] 赵小慧. 舟山潮间带底栖有孔虫种群分布及对海洋环境因子的生态响应[D]. 舟山: 浙江海洋大学, 2018.

    Zhao Xiaohui. Distribution of benthic foraminifera population in the intertidal zone of Zhoushan and its ecological response to marine environmental factors[D]. Hangzhou: Zhejiang Ocean University, 2018.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  118
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-08-27
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回