留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沿岸流不稳定运动传播特性的小波相干谱分析

任春平 刘宇 赵喜萍

任春平,刘宇,赵喜萍. 沿岸流不稳定运动传播特性的小波相干谱分析[J]. 海洋学报,2021,43(6):118–128 doi: 10.12284/hyxb2021092
引用本文: 任春平,刘宇,赵喜萍. 沿岸流不稳定运动传播特性的小波相干谱分析[J]. 海洋学报,2021,43(6):118–128 doi: 10.12284/hyxb2021092
Ren Chunping,Liu Yu,Zhao Xiping. An analysis on the propagation of the instabilities of longshore currents using wavelet coherence spectrum[J]. Haiyang Xuebao,2021, 43(6):118–128 doi: 10.12284/hyxb2021092
Citation: Ren Chunping,Liu Yu,Zhao Xiping. An analysis on the propagation of the instabilities of longshore currents using wavelet coherence spectrum[J]. Haiyang Xuebao,2021, 43(6):118–128 doi: 10.12284/hyxb2021092

沿岸流不稳定运动传播特性的小波相干谱分析

doi: 10.12284/hyxb2021092
基金项目: 水利工程安全与仿真国家重点实验室开放基金(HESS-2006);中国博士后基金(2013M541179);太原理工大学校基金(2017MS07)
详细信息
    作者简介:

    任春平(1978-),男,山西省祁县人,博士,副教授,主要从事河口海岸动力学研究。E-mail:chunpingren@163.com

  • 中图分类号: P731.21

An analysis on the propagation of the instabilities of longshore currents using wavelet coherence spectrum

  • 摘要: 沿岸流不稳定运动属于超低频运动,研究它的传播特性,有助于深入理解其对岸滩演变、污染物、鱼卵等输移、迁移的影响。本文基于小波相干谱对所选实验波况进行了研究,分析了规则波、随机波入射情况下沿岸流不稳定运动传播特性,并讨论了入射波高、周期、坡度等对其的影响。结果表明,不规则波更易诱导出沿岸流不稳定运动,且在不规则波情况下,不稳定运动在沿岸方向相距4 m的两个断面上产生的相位差都约为±30°,与波浪入射角相近;随着入射波高的增加,非线性随之增强,更易诱导出不稳定运动,生成的沿岸流不稳定运动周期范围将增大;入射波周期对沿岸流不稳定运动的传播特性影响较小;坡度越陡越易诱导出超低频的不稳定运动。
  • 图  1  实验布置

    Fig.  1  Experimental layout

    图  2  实验地形

    Fig.  2  Bottom profile

    图  3  1∶40地形流速仪布置

    Fig.  3  The layout of velocity meters for slope 1∶40

    图  4  波况4和波况9分别在x=2.5 m和x=4.0 m处采集的沿岸方向流速时间历程

    Fig.  4  Time series of alongshore velocity at x=2.5 m and x=4.0 m for Case 4 and Case 9

    图  5  Xy1、y2及y3信号

    Fig.  5  Test signals of X, y1, y2 and y3

    图  6  X(a)和Y=y2(b)的小波谱、X-Y小波交叉谱(c)及X-Y小波相干谱(d)

    Fig.  6  The wavelet power spectrum of X (a) and Y=y2 (b), and X-Y cross wavelet spectrum (c) and X-Y wavelet coherence spectrum (d)

    图  7  波况1中距离岸线2 m(a)、2.5 m(b)及3 m(c)处对应的小波相干谱

    Fig.  7  Wavelet coherent spectrum at x=2.0 m (a), x=2.5 m (b) and x=3.0 m (c) under Case 1

    图  11  波况5中距离岸线3.5 m(a)、4.0 m(b)及4.5 m(c)处对应的小波相干谱

    Fig.  11  Wavelet coherent spectrum at x=3.5 m (a), x=4.0 m (b) and x=4.5 m (c) under Case 5

    图  8  波况2中距离岸线3.5 m(a)、4.0 m(b)及4.5 m(c)处对应的小波相干谱

    Fig.  8  Wavelet coherent spectrum at x=3.5 m (a), x=4.0 m (b) and x=4.5 m (c) under Case 2

    图  9  波况3中距离岸线4.5 m(a)、5.0 m(b)及5.5 m(c)处对应的小波相干谱

    Fig.  9  Wavelet coherent spectrum at x=4.5 m (a), x=5.0 m (b) and x=5.5 m (c) under Case 3

    图  10  波况4中距离岸线2.0 m(a)、2.5 m(b)及3.0 m(c)处对应的小波相干谱

    Fig.  10  Wavelet coherent spectrum at x=2.0 m (a), x=2.5 m (b) and x=3.0 m (c) under Case 4

    图  12  波况6中距离岸线5.5 m(a)、6.0 m(b)及6.5 m(c)处对应的小波相干谱

    Fig.  12  Wavelet coherent spectrum at x=5.5 m (a), x=6.0 m (b) and x=6.5 m (c) under Case 6

    图  17  波况11中距离岸线2.5 m(a)、3.0 m(b)及3.5 m(c)处对应的小波相干谱

    Fig.  17  Wavelet coherent spectrum at x=2.5 m (a), x=3.0 m (b) and x=3.5 m (c) under Case 11

    图  13  波况7中距离岸线2.0 m(a)、2.5 m(b)及3.0 m(b)处对应的小波相干谱

    Fig.  13  Wavelet coherent spectrum at x=2.0 m (a), x=2.5 m (b) and x=3.0 m (c) under Case 7

    图  14  波况8中距离岸线2.5 m(a)、3.0 m(b)及3.5 m(c)处对应的小波相干谱

    Fig.  14  Wavelet coherent spectrum at x=2.5 m (a), x=3.0 m (b) and x=3.5 m (c) under Case 8

    图  15  波况9中距离岸线3.5 m(a)、4.0 m(b)及4.5 m(c)处对应的小波相干谱

    Fig.  15  Wavelet coherent spectrum at x=3.5 m (a), x=4.0 m (b) and x=4.5 m (c) under Case 9

    图  16  波况10中距离岸线2.0 m(a)、2.5 m(b)及3.0 m(c)处对应的小波相干谱

    Fig.  16  Wavelet coherent spectrum at x=2.0 m (a), x=2.5 m (b) and x=3.0 m (c)under Case 10

    表  1  波况参数

    Tab.  1  Wave parameters

    入射波波况坡度静水深/
    cm
    入射
    波高/cm
    入射波
    周期/s
    x1/mxn/m
    规则波11∶40455.01.02.52.03.0
    21∶40455.91.54.03.54.5
    31∶404510.51.55.04.55.5
    41∶404513.01.52.52.03.0
    51∶40455.22.04.03.54.5
    随机波61∶100183.42.06.05.56.5
    71∶40453.61.02.52.03.0
    81∶40455.51.03.02.53.5
    91∶40457.81.04.03.54.5
    101∶40454.01.52.52.03.0
    111∶40453.72.03.02.53.5
    下载: 导出CSV
  • [1] Shanks A L, Morgan S G, Macmahan J, et al. Persistent differences in horizontal gradients in phytoplankton concentration maintained by surf zone hydrodynamics[J]. Estuaries and Coasts, 2018, 41(1): 158−176. doi: 10.1007/s12237-017-0278-2
    [2] Bowen A J, Holman R A. Shear instabilities of the mean longshore current 1. Theory[J]. Journal of Geophysical Research, 1989, 94(C12): 18023−18030. doi: 10.1029/JC094iC12p18023
    [3] Özkan-Haller H T, Kirby J T. Nonlinear evolution of shear instabilities of the longshore current: A comparison of observations and computations[J]. Journal of Geophysical Research: Oceans, 1999, 104(C11): 25953−25984. doi: 10.1029/1999JC900104
    [4] Dodd N, Iranzo V, Caballería M. A subcritical instability of wave-driven alongshore currents[J]. Journal of Geophysical Research, 2004, 109(C2): C02018. doi: 10.1029/2001JC00106
    [5] Reniers A J H M, Battjes J A, Falqués A, et al. A laboratory study on the shear instability of longshore currents[J]. Journal of Geophysical Research: Oceans, 1997, 102(C4): 8597−8609. doi: 10.1029/96JC03863
    [6] Noyes T J, Guza R T, Feddersen F, et al. Model-data comparisons of shear waves in the nearshore[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05019. doi: 10.1029/2004JC002541
    [7] Ren Chunping, Zou Zhili, Qiu Dahong. Experimental study of the instabilities of alongshore currents on plane beaches[J]. Coastal Engineering, 2012, 59(1): 72−89. doi: 10.1016/j.coastaleng.2011.07.004
    [8] 任春平, 蒋利君, 季海嘉. 沿岸流不稳定运动对边缘波影响的实验研究[J]. 中国科学: 技术科学, 2015, 45(4): 423−433. doi: 10.1360/N092014-00028

    Ren Chunping, Jiang Lijun, Ji Haijia. A laboratory study of the effects of the instability of longshore currents on the edge waves[J]. Scientia Sinica Technologica, 2015, 45(4): 423−433. doi: 10.1360/N092014-00028
    [9] 沈良朵. 缓坡沿岸流不稳定性特征研究[D]. 大连: 大连理工大学, 2015.

    Shen Liangduo. Study of the feature of longshore current and its instability on mild beach slope[D]. Daliang: Daliang University of Technology, 2015.
    [10] Ruiz-Merchán J, Otero L, Conde M, et al. Field observations of wave and current characteristics on a microtidal reflective beach[J]. Journal of Coastal Research, 2019, 35(6): 1164−1184. doi: 10.2112/JCOASTRES-D-18-00120.1
    [11] Conde-Frias M, Otero L, Restrepo J C, et al. Experimental analysis of infragravity waves in two eroded microtidal beaches[J]. Acta Oceanologica Sinica, 2017, 36(5): 31−43. doi: 10.1007/s13131-017-1054-7
    [12] Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561−566. doi: 10.5194/npg-11-561-2004
    [13] Wang Gang, Nguyena V T, Zheng Jinhai, et al. Disintegration of linear edge waves[J]. China Ocean Engineering, 2013, 27(4): 557−562. doi: 10.1007/s13344-013-0047-3
    [14] Reniers A J H M, Battjes J A. A laboratory study of longshore currents over barred and non-barred beaches[J]. Coastal Engineering, 1997, 30(1): 1−21.
    [15] Tang Jun, Lü Yigang, Shen Yongming, et al. Numerical study on influences of breakwater layout on coastal waves, wave-induced currents, sediment transport and beach morphological evolution[J]. Ocean Engineering, 2017, 141: 375−387. doi: 10.1016/j.oceaneng.2017.06.042
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  100
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-08-08
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回