留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底声学底质分类的ELM-AdaBoost方法

王嘉翀 吴自银 王明伟 周洁琼 赵荻能 罗孝文

王嘉翀,吴自银,王明伟,等. 海底声学底质分类的ELM-AdaBoost方法[J]. 海洋学报,2021,43(12):144–151 doi: 10.12284/hyxb2021091
引用本文: 王嘉翀,吴自银,王明伟,等. 海底声学底质分类的ELM-AdaBoost方法[J]. 海洋学报,2021,43(12):144–151 doi: 10.12284/hyxb2021091
Wang Jiachong,Wu Ziyin,Wang Mingwei, et al. ELM-AdaBoost method of acoustic seabed sediment classification[J]. Haiyang Xuebao,2021, 43(12):144–151 doi: 10.12284/hyxb2021091
Citation: Wang Jiachong,Wu Ziyin,Wang Mingwei, et al. ELM-AdaBoost method of acoustic seabed sediment classification[J]. Haiyang Xuebao,2021, 43(12):144–151 doi: 10.12284/hyxb2021091

海底声学底质分类的ELM-AdaBoost方法

doi: 10.12284/hyxb2021091
基金项目: 国家自然科学基金(41830540,42006073,41906069);浙江省自然科学基金(LY21D060002);中央级公益性科研所基本科研业务费专项资金项目(JZ1902,JG2005,SZ2002);卫星海洋环境动力学国家重点实验室自主项目(SOEDZZ2101);全球变化与海气相互作用专项(GASI-EOGE-01)
详细信息
    作者简介:

    王嘉翀(1995-),男,浙江省台州市人,研究方向为地球信息与探测技术。E-mail:444684215@qq.com

    通讯作者:

    吴自银(1972-),男,河南省信阳市人,研究员,研究方向为多波束海底地形地貌探测与研究。E-mail:ziyinwu@163. com

  • 中图分类号: P714+.6

ELM-AdaBoost method of acoustic seabed sediment classification

  • 摘要: 基于自适应增强算法(AdaBoost)结合极限学习机(ELM),通过迭代、调整、优化ELM分类器之间的权值,从而构建了具有强鲁棒性、高精度的ELM-AdaBoost强分类器,增强了现有的ELM分类器的稳定性。以珠江口海区侧扫声呐图像为实验数据,对礁石、砂、泥3类典型底质进行分类识别,该方法的平均分类精度超过90%,优于单一ELM分类器的平均分类精度85.95%,也优于LVQ、BP等传统分类器,且在分类所耗时间上也远少于传统分类器。实验结果表明,本文构建的ELM-AdaBoost方法可有效应用于海底声学底质分类,可满足实时底质分类的需求。
  • 图  1  ELM网络结构

    Fig.  1  Network structure of extreme learning machine

    图  2  基于ELM-AdaBoost方法的海底底质分类流程

    Fig.  2  Flow chart of seabed sediment classification based on ELM-AdaBoost method

    图  3  研究区位置示意图(a)及礁石(b)、砂(c)和泥(d)3种典型底质的声呐图像

    Fig.  3  Location of study area (a) and three typical seabed sediment sonar images of rock (b), sand (c) and mud (d)

    图  4  隐含层神经元个数对ELM分类性能影响

    Fig.  4  The influence of the number of hidden layer neurons on the extreme learning machine classification performance

    图  5  ELM-AdaBoost和ELM误差绝对值对比

    Fig.  5  Comparison of absolute error value between extreme learning machine-adaptive boosting and extreme learning machine

    图  6  5种分类器的分类精度对比

    Fig.  6  Comparison of classification accuracy of five classifiers

    表  1  礁石、砂和泥3种底质的特征向量

    Tab.  1  Characteristic vectors of three types of seabed sediment of rock, sand, and mud

    均值标准差对比度相关系数能量
    礁石0.765 7 0.153 41.621 20.326 10.121 60.616 4
    0.724 20.180 23.750 00.032 80.087 60.577 1
    0.726 60.142 01.681 80.358 70.097 60.603 5
    0.675 00.155 92.659 10.194 70.062 10.574 6
    0.562 70.230 56.053 00.127 90.040 30.472 6
    0.848 80.104 71.015 10.235 80.159 90.694 7
    0.812 50.112 11.659 10.066 40.103 10.615 4
    0.768 60.127 62.560 6–0.089 40.097 70.570 8
    0.760 80.114 51.712 10.023 60.107 10.625 6
    0.798 60.109 11.825 7–0.164 60.118 00.602 6
    0.535 90.298 03.257 60.702 60.033 60.587 0
    0.279 70.252 53.151 50.604 30.106 60.664 4
    0.408 70.302 34.204 50.572 00.035 20.563 0
    0.512 70.288 23.454 50.654 40.039 40.586 9
    0.630 80.220 02.598 50.598 70.045 60.597 9
    下载: 导出CSV

    表  2  5种分类器的分类性能对比表

    Tab.  2  Comparison of classification performance of five classifiers

    分类器训练样本平均精度/%底质类型测试平均精度/%所有测试样本平均精度/%完成分类所耗平均时间/s
    BP89.80礁石86.8882.525
    81.44
    79.23
    LVQ76.83礁石75.6681.09298
    84.35
    83.26
    PSO-SVM93.87礁石85.6288.22447
    93.85
    85.18
    ELM93.68礁石82.7085.950.11
    90.41
    85.19
    ELM -AdaBoost93.56礁石91.9290.400.37
    91.58
    87.70
    下载: 导出CSV
  • [1] 周兴华, 陈永奇. 多波束声纳数据的底质分类[C]// 我国专属经济区和大陆架勘测研究专项学术交流会论文集. 北京: 海洋出版社, 2002: 1-7.

    Zhou Xinghua, Chen Yongqi. A review of seafloor sediment classification using multibeam sonar data[C]// Collected Works of Exploration in Exclusive Economic Zone and Shelf Area of China. Beijing: China Ocean Press, 2002: 1−7.
    [2] 吴自银, 郑玉龙, 初凤友, 等. 海底浅表层信息声探测技术研究现状及发展[J]. 地球科学进展, 2005, 20(11): 1210−1217. doi: 10.3321/j.issn:1001-8166.2005.11.007

    Wu Ziyin, Zheng Yulong, Chu Fengyou, et al. Research status and prospect of sonar-detecting techniques near submarine[J]. Advances in Earth Science, 2005, 20(11): 1210−1217. doi: 10.3321/j.issn:1001-8166.2005.11.007
    [3] Alexandrou D, Pantzartzis D. Seafloor classification with neural networks[C]//Conference Proceedings on Engineering in the Ocean Environment. Washington: IEEE, 1990: 24−26.
    [4] 阳凡林, 刘经南, 赵建虎, 等. 基于遗传算法的BP网络实现海底底质分类[J]. 测绘科学, 2006, 31(2): 111−114. doi: 10.3771/j.issn.1009-2307.2006.02.038

    Yang Fanlin, Liu Jingnan, Zhao Jianhu, et al. Seabed classification using BP neural network based on GA[J]. Science of Surveying and Mapping, 2006, 31(2): 111−114. doi: 10.3771/j.issn.1009-2307.2006.02.038
    [5] 唐秋华, 刘保华, 陈永奇, 等. 基于改进BP神经网络的海底底质分类[J]. 海洋测绘, 2009, 29(5): 40−43,56. doi: 10.3969/j.issn.1671-3044.2009.05.012

    Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Seabed classification with improved BP neural network[J]. Hydrographic Surveying and Charting, 2009, 29(5): 40−43,56. doi: 10.3969/j.issn.1671-3044.2009.05.012
    [6] 陈佳兵, 吴自银, 赵荻能, 等. 基于粒子群优化算法的PSO-BP海底声学底质分类方法[J]. 海洋学报, 2017, 39(9): 51−57.

    Chen Jiabing, Wu Ziyin, Zhao Dineng, et al. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51−57.
    [7] 贺清碧. BP神经网络及应用研究[D]. 重庆: 重庆交通学院, 2004.

    He Qingbi. Back propagation neural network and applications[D]. Chongqing: Chongqing Jiaotong University, 2004.
    [8] Chakraborty B, Kodagali V, Baracho J. Sea-floor classification using multibeam echo-sounding angular backscatter data: A real-time approach employing hybrid neural network architecture[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 121−128. doi: 10.1109/JOE.2002.808211
    [9] 唐秋华, 周兴华, 丁继胜, 等. 学习向量量化神经网络在多波束底质分类中的应用研究[J]. 武汉大学学报:信息科学版, 2006, 31(3): 229−232.

    Tang Qiuhua, Zhou Xinghua, Ding Jisheng, et al. Seafloor classification from multibeam backscatter data using learning vector quantization neural network[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 229−232.
    [10] 熊明宽, 吴白银, 李守军, 等. 基于SVM的海底声纳图像底质识别[J]. 海洋通报, 2012, 31(4): 409−414.

    Xiong Mingkuan, Wu Ziyin, Li Shoujun, et al. Seafloor sonar sediment image recognition with the Support Vector Machine[J]. Marine Science Bulletin, 2012, 31(4): 409−414.
    [11] 郭军, 马金凤. 基于粒子群优化算法的SVM神经网络在海底底质分类中的应用[J]. 测绘与空间地理信息, 2012, 35(12): 66−68. doi: 10.3969/j.issn.1672-5867.2012.12.021

    Guo Jun, Ma Jinfeng. Support vector machine neural network based on particle swarm optimization in seafloor classification[J]. Geomatics & Spatial Information Technology, 2012, 35(12): 66−68. doi: 10.3969/j.issn.1672-5867.2012.12.021
    [12] 马飞虎, 鄂栋臣, 赵建虎, 等. 基于ISODATA算法的海底底质分类[J]. 测绘信息与工程, 2008, 33(6): 43−45.

    Ma Feihu, E Dongchen, Zhao Jianhu, et al. Seabed classification based on ISODATA algorithm[J]. Journal of Geomatics, 2008, 33(6): 43−45.
    [13] 吕良, 金绍华, 边刚, 等. K-均值聚类算法在多波束底质分类中的应用[J]. 海洋测绘, 2018, 38(3): 64−68. doi: 10.3969/j.issn.1671-3044.2018.03.016

    Lü Liang, Jin Shaohua, Bian Gang, et al. The application of K-means clustering analysis algorithm in multibeam seafloor classification[J]. Hydrographic Surveying and Charting, 2018, 38(3): 64−68. doi: 10.3969/j.issn.1671-3044.2018.03.016
    [14] Marsh I, Brown C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10): 1269−1276. doi: 10.1016/j.apacoust.2008.07.012
    [15] 唐秋华, 刘保华, 陈永奇, 等. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3): 380−384. doi: 10.3969/j.issn.1000-3630.2007.03.006

    Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Acoustic seafloor classification using self organizing map neural network[J]. Technical Acoustics, 2007, 26(3): 380−384. doi: 10.3969/j.issn.1000-3630.2007.03.006
    [16] 郭军, 马金凤. 基于K-L变换的自组织竞争神经网络在海底底质分类中的应用[J]. 测绘工程, 2013, 22(1): 51−54. doi: 10.3969/j.issn.1006-7949.2013.01.014

    Guo Jun, Ma Jinfeng. Self-organization competition neural network based on K-L transform in seafloor classification[J]. Engineering of Surveying and Mapping, 2013, 22(1): 51−54. doi: 10.3969/j.issn.1006-7949.2013.01.014
    [17] 赵芳, 索岩, 彭子然. 基于蚁群优化与独立特征集的遥感图像实时分类算法[J]. 计算机应用研究, 2020, 37(2): 573−577.

    Zhao Fang, Suo Yan, Peng Ziran. Real-time classification algorithm of remote sensing images based on ant colony optimization algorithm and independent feature sets[J]. Application Research of Computers, 2020, 37(2): 573−577.
    [18] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——探测与处理理论技术[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High-Resolution Submarine Topography−−Theory and Technology for Surveying and Post-Processing[M]. Beijing: Science Press , 2017.
    [19] Ji Xue, Yang Bisheng, Tang Qiuhua. Acoustic seabed classification based on multibeam echosounder backscatter data using the PSO-BP-AdaBoost Algorithm: A case study from Jiaozhou Bay, China[J]. IEEE Journal of Oceanic Engineering, 2021, 46(2): 509−519. doi: 10.1109/JOE.2020.2989853
    [20] 边冰, 赵明政. 基于深度极限学习机的水质预测研究[J]. 华北理工大学学报(自然科学版), 2020, 42(1): 51−57.

    Bian Bing, Zhao Mingzheng. Study on water quality prediction based on deep extreme learning machine[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2020, 42(1): 51−57.
    [21] 吴军, 王士同, 赵鑫. 正负模糊规则系统、极限学习机与图像分类[J]. 中国图象图形学报, 2011, 16(8): 1408−1417. doi: 10.11834/jig.100621

    Wu Jun, Wang Shitong, Zhao Xin. Positive and negative fuzzy rule system, extreme learning machine and image classification[J]. Journal of Image and Graphics, 2011, 16(8): 1408−1417. doi: 10.11834/jig.100621
    [22] Huang Guangbin, Zhu Qinyu, Siew C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2005: 25−29.
    [23] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1995, 55(1): 119−139.
    [24] 唐秋华, 周兴华, 丁继胜, 等. 多波束反向散射强度数据处理研究[J]. 海洋学报, 2006, 28(2): 51−55.

    Tang Qiuhua, Zhou Xinghua, Ding Jisheng, et al. Study on processing of multibeam backscatter data[J]. Haiyang Xuebao, 2006, 28(2): 51−55.
    [25] 李庆武, 霍冠英, 周妍. 声呐图像处理[M]. 北京: 科学出版社, 2015.

    Li Qingwu, Huo Guanying, Zhou Yan. Sonar Image Processing[M]. Beijing: Science Press, 2015.
    [26] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622−635. doi: 10.11834/jig.20090409

    Liu Li, Kuang Gangyao. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622−635. doi: 10.11834/jig.20090409
    [27] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610−621. doi: 10.1109/TSMC.1973.4309314
    [28] Wu Ziyin, Milliman J D, Zhao Dineng, et al. Geomorphologic changes in the lower Pearl River Delta, 1850−2015, largely due to human activity[J]. Geomorphology, 2018, 314: 42−54. doi: 10.1016/j.geomorph.2018.05.001
    [29] Wu Ziyin, Saito Y, Zhao Dineng, et al. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River Estuary, China during 1955−2013[J]. Scientific Reports, 2016, 6(1): 37742. doi: 10.1038/srep37742
    [30] Wu Ziyin, Milliman J D, Zhao Dineng, et al. Recent geomorphic change in LingDing Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China[J]. Global and Planetary Change, 2014, 123: 1−12. doi: 10.1016/j.gloplacha.2014.10.009
    [31] 熊明宽, 吴自银, 李守军, 等. 基于遗传小波神经网络的海底声学底质识别分类[J]. 海洋学报, 2014, 36(5): 90−97.

    Xiong Mingkuan, Wu Ziyin, Li Shoujun, et al. Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms[J]. Haiyang Xuebao, 2014, 36(5): 90−97.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  69
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回