留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚礁海岸波流运动特性整体物理模型实验研究

陈树彬 陈松贵 姚宇 陈汉宝

陈树彬,陈松贵,姚宇,等. 珊瑚礁海岸波流运动特性整体物理模型实验研究[J]. 海洋学报,2021,43(5):110–119 doi: 10.12284/hyxb2021087
引用本文: 陈树彬,陈松贵,姚宇,等. 珊瑚礁海岸波流运动特性整体物理模型实验研究[J]. 海洋学报,2021,43(5):110–119 doi: 10.12284/hyxb2021087
Chen Shubin,Chen Songgui,Yao Yu, et al. Three dimensional physical modelling study on wave and current characteristics in coral reef coastal system[J]. Haiyang Xuebao,2021, 43(5):110–119 doi: 10.12284/hyxb2021087
Citation: Chen Shubin,Chen Songgui,Yao Yu, et al. Three dimensional physical modelling study on wave and current characteristics in coral reef coastal system[J]. Haiyang Xuebao,2021, 43(5):110–119 doi: 10.12284/hyxb2021087

珊瑚礁海岸波流运动特性整体物理模型实验研究

doi: 10.12284/hyxb2021087
基金项目: 国家杰出青年科学基金(51425091);中国科协青年人才托举工程(2018QNRC001);中央级公益性科研院所基本科研业务费(TKS190102,TKS20200402);湖南省水沙科学与水灾害防治重点实验室开放基金(2019SS01)
详细信息
    作者简介:

    陈树彬(1996—),男,福建省莆田市人,主要从事海岸动力学研究。E-mail:hjtscsb@126.com

    通讯作者:

    陈松贵,副研究员,天津市人,博士,主要从事海岸水动力研究。E-mail:chensg05@163.com

  • 中图分类号: TV139.26

Three dimensional physical modelling study on wave and current characteristics in coral reef coastal system

  • 摘要: 根据现场地形在港池中建立三维珊瑚礁−潟湖−裂口海岸定床整体物理模型,采用波高传感器、流速仪和表面流速测量系统分别测量了规则波作用下珊瑚礁海岸不同位置的波浪和流场特征。结果表明:礁坪上,波高在向岸方向逐渐减小,总减小幅度为86.7%,增水先增大后减小,沿礁坪下降幅度为65.9%,水流以向岸流为主,存在着先增大后减小的趋势;潟湖中,波高靠近裂口处较大,中部最大值约为两侧最小值的2.8倍,增水则靠近裂口处最小,相比两侧最大值下降了25.5%,水流主要为对称地指向裂口的沿岸流,流速从两侧到裂口先增大后减小;裂口中波高变化不大,增水在靠近潟湖处最大,为礁坪上增水的47.6%,水流主要为离岸流,流速同样是先增大后减小。量化分析了环流驱动力、辐射应力与波面压力梯度的空间变化规律,发现礁坪上向岸流变化是平均水位梯度和辐射应力相互作用的结果,在裂口中的离岸流驱动力主要为辐射应力,而潟湖中的沿岸流变化由平均水位梯度决定的。
  • 图  1  实验设置

    Fig.  1  Experimental set-up

    图  2  现场观测原型

    Fig.  2  Field observation prototype

    图  3  实验场地

    Fig.  3  Experimental area

    图  4  工业相机拍摄的图像

    Fig.  4  Images taken by industrial camera

    图  5  SVM系统与流速仪测量结果对比

    Fig.  5  Comparison of measurement results between SVM system and current meter

    图  6  两次重复实验波面和流速时间序列对比

    Fig.  6  Time series comparison of two repeated wave surface and velocity

    图  7  y = 8.7 m向岸剖面礁坪波高和平均水位分布

    Fig.  7  Cross-reef variation of wave height and mean water level with y = 8.7 m

    图  8  x=37 m潟湖沿岸剖面波高和平均水位分布

    Fig.  8  Longshore variation of wave height and mean water level in the lagoon with x=37 m

    图  9  y = 19.1 m裂口向岸剖面波高和平均水位分布

    Fig.  9  Cross-shore variation of wave height and mean water level in the channel with y = 19.1 m

    图  10  流速矢量

    Fig.  10  Velocity vector

    图  11  礁坪向岸剖面流速沿程变化

    Fig.  11  Cross-shore variation of velocity on the reef

    图  12  礁坪沿岸剖面流速沿程变化

    Fig.  12  Longshore variation of velocity on the reef

    图  13  潟湖沿岸剖面流速沿程变化

    Fig.  13  Longshore variation of velocity in the lagoon

    图  14  裂口向岸剖面流速沿程变化

    Fig.  14  Cross-shore variation of velocity in the channel

    图  15  裂口沿岸剖面流速沿程变化

    Fig.  15  Longshore variation of velocity in the channel

    图  16  平均波高和平均水位分布

    Fig.  16  Contours of wave height and mean water level

    图  17  礁坪和潟湖中的波面压力梯度($F_x^{(1)}$)、辐射应力梯度($F_x^{(2)}$)和总驱动力($F_x^{(1)}$+$F_x^{(2)}$)向岸变化

    Fig.  17  Cross-shore variation of the pressure gradient ($F_x^{(1)}$), radiation stress gradient ($F_x^{(2)}$) and their joint forces ($F_x^{(1)}$+$F_x^{(2)}$) on the reef

    图  18  潟湖中沿岸方向波面压力梯度($F_y^{(1)}$),辐射应力梯度($F_y^{(2)}$)以及两者合力($F_y^{(1)}$+$F_y^{(2)}$

    Fig.  18  Longshore variation of pressure gradient ($F_y^{(1)}$), radiation stress gradient ($F_y^{(2)}$) and their joint forces ($F_y^{(1)}$+$F_y^{(2)}$) in the lagoon

  • [1] Hearn C, Atkinson M, Falter J. A physical derivation of nutrient-uptake rates in coral reefs: Effects of roughness and waves[J]. Coral Reefs, 2001, 20(4): 347−356. doi: 10.1007/s00338-001-0185-6
    [2] Kench P S, Brander R W. Wave processes on coral reef flats: Implications for reef geomorphology using Australian case studies[J]. Journal of Coastal Research, 2006, 22(1): 209−223.
    [3] Hench J L, Leichter J J, Monismith S G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system[J]. Limnology and Oceanography, 2008, 53(6): 2681−2694. doi: 10.4319/lo.2008.53.6.2681
    [4] Lowe R J, Falter J L, Monismith S G, et al. Wave-driven circulation of a coastal reef-lagoon system[J]. Journal of Physical Oceanography, 2009, 39(4): 873−893. doi: 10.1175/2008JPO3958.1
    [5] Symonds G, Zhong Liejun, Mortimer N A. Effects of wave exposure on circulation in a temperate reef environment[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09010.
    [6] Taebi S, Lowe R J, Pattiaratchi C B, et al. Nearshore circulation in a tropical fringing reef system[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02016.
    [7] Monismith S G, Herdman L M M, Ahmerkamp S, et al. Wave transformation and wave-driven flow across a steep coral reef[J]. Journal of Physical Oceanography, 2013, 43(7): 1356−1379. doi: 10.1175/JPO-D-12-0164.1
    [8] Gourlay M R. Wave set-up on coral reefs. 1. set-up and wave-generated flow on an idealised two dimensional horizontal reef[J]. Coastal Engineering, 1996, 27(3/4): 161−193.
    [9] Demirbilek Z, Nwogu O G, Ward D L. Laboratory study of wind effect on Runup over fringing reefs. Report 1: Data report[R]. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL-TR-07-4, Washington: U. S. Army Engineer, 2007.
    [10] 梅弢, 高峰. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003

    Mei Tao, Gao Feng. Flume experiment research on law of wave propagation in reef flat[J]. Journal of Waterway and Harbor, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003
    [11] Yao Yu, Huang Zhenhua, Monismith S G, et al. Characteristics of monochromatic waves breaking over fringing reefs[J]. Journal of Coastal Research, 2013, 29(1): 94−104.
    [12] 柳淑学, 刘宁, 李金宣, 等. 波浪在珊瑚礁地形上破碎特性试验研究[J]. 海洋工程, 2015, 33(2): 42−49.

    Liu Shuxue, Liu Ning, Li Jinxuan, et al. Experimental researches on wave propagation characteristics on reefs terrain[J]. The Ocean Engineering, 2015, 33(2): 42−49.
    [13] Buckley M L, Lowe R J, Hansen J E, et al. Wave setup over a fringing reef with large bottom roughness[J]. Journal of Physical Oceanography, 2016, 46(8): 2317−2333. doi: 10.1175/JPO-D-15-0148.1
    [14] 姚宇, 唐政江, 杜睿超, 等. 珊瑚礁破碎带附近波浪演化和波生流实验研究[J]. 海洋科学, 2017, 41(2): 12−19. doi: 10.11759/hykx20160313001

    Yao Yu, Tang Zhengjiang, Du Ruichao, et al. Experimental study of wave transformation and wave-driven current around the surf zone over coral reefs[J]. Marine Sciences, 2017, 41(2): 12−19. doi: 10.11759/hykx20160313001
    [15] 陈松贵, 张华庆, 陈汉宝, 等. 不规则波在筑堤珊瑚礁上传播的大水槽实验研究[J]. 海洋通报, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011

    Chen Songgui, Zhang Huaqing, Chen Hanbao, et al. Experimental study of irregular wave transformation on reefs with seawalls in large wave flume[J]. Marine Science Bulletin, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011
    [16] 陈松贵, 王泽明, 张弛, 等. 珊瑚礁地形上直立式防浪堤越浪大水槽实验[J]. 科学通报, 2019, 64(28/29): 3049−3058.

    Chen Songgui, Wang Zeming, Zhang Chi, et al. Experiment on wave overtopping of a vertical seawall on coral reefs in large wave flume[J]. Chinese Science Bulletin, 2019, 64(28/29): 3049−3058.
    [17] 陈松贵, 陈汉宝, 赵洪波, 等. 珊瑚礁地形上胸墙波浪力大水槽试验[J]. 河海大学学报(自然科学版), 2019, 47(1): 65−70.

    Chen Songgui, Chen Hanbao, Zhao Hongbo, et al. Experimental study of wave forces on the seawall of coral reef in large wave flume[J]. Journal of Hohai University (Natural Sciences), 2019, 47(1): 65−70.
    [18] 陈松贵, 郑金海, 王泽明, 等. 珊瑚岛礁护岸对礁坪上极端波浪传播特性的影响[J]. 水利水运工程学报, 2019(6): 59−68. doi: 10.12170/201906007

    Chen Songgui, Zheng Jinhai, Wang Zeming, et al. Experimental study on impact of revetments on extreme wave propagation characteristics on coral reefs[J]. Hydro-Science and Engineering, 2019(6): 59−68. doi: 10.12170/201906007
    [19] Yao Yu, Huang Zhenhua, He Wenrun, et al. Wave-induced setup and wave-driven current over Quasi-2DH reef-lagoon-channel systems[J]. Coastal Engineering, 2018, 138: 113−125. doi: 10.1016/j.coastaleng.2018.04.009
    [20] Zheng Jinhai, Yao Yu, Chen Songgui, et al. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 2020, 162: 103772. doi: 10.1016/j.coastaleng.2020.103772
    [21] Haller M C, Dalrymple R A, Svendsen I A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C6): 14-1−14-21.
  • 加载中
图(18)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  124
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-05-13
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回