留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型海洋温差能回热循环热力学分析

彭景平 葛云征 陈凤云 刘蕾 吴浩宇 刘伟民

彭景平,葛云征,陈凤云,等. 新型海洋温差能回热循环热力学分析[J]. 海洋学报,2021,43(5):120–126 doi: 10.12284/hyxb2021085
引用本文: 彭景平,葛云征,陈凤云,等. 新型海洋温差能回热循环热力学分析[J]. 海洋学报,2021,43(5):120–126 doi: 10.12284/hyxb2021085
Peng Jingping,Ge Yunzheng,Chen Fengyun, et al. Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle[J]. Haiyang Xuebao,2021, 43(5):120–126 doi: 10.12284/hyxb2021085
Citation: Peng Jingping,Ge Yunzheng,Chen Fengyun, et al. Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle[J]. Haiyang Xuebao,2021, 43(5):120–126 doi: 10.12284/hyxb2021085

新型海洋温差能回热循环热力学分析

doi: 10.12284/hyxb2021085
基金项目: 国家自然科学基金(41976204,51709055);中韩海洋科学共同研究中心项目(PI-2018-3)
详细信息
    作者简介:

    彭景平(1987-),男,山东省临沂市人,主要从事海洋温差能开发利用方面研究。E-mail:p_jping@163.com

    通讯作者:

    刘伟民,研究员,博士,主要从事海洋热能转换技术及综合利用方面研究。E-mail:lwmxjtu@163.com

  • 中图分类号: P743.4

Thermodynamic analysis of a new ocean thermal energy conversion regenerative cycle

  • 摘要: 针对海洋温差能可利用温差小,利用效率低的问题,本文提出了一种采用非共沸混合工质的新型海洋温差能回热循环,并基于热力学定律对提出的热力循环进行热力学分析。选取蒸发压力、工质的质量分数作为变量,对提出的热力循环进行热力学分析研究。研究结果表明:以工质质量分数为变量时,循环热效率和系统净输出随蒸发压力的增加先增大后减小,系统热效率在工质质量分数为0.91时取得最大值5.28%,净输出功在浓度为0.96时取得最大值3.83 kW。以蒸发压力为变量时,循环热效率和系统净输出随工质质量分数的增大先增大后减小,系统热效率在蒸发压力为0.595 MPa时取得最大值5.26%,净输出功在压力为0.58 MPa时取得最大值3.57 kW。在相同运行控制参数下与Uehara循环、Yoon循环进行对比,提出的循环系统热效率最佳。提出的热力循环系统分析结果可对提高海洋温差能利用效率提供理论依据和参考。
  • 图  1  新型海洋温差能回热循环系统原理示意图

    Fig.  1  Schematic diagram of new ocean thermal energy conversion regenerative cycle system

    图  2  新型海洋温差能回热循环系统T-S-w

    Fig.  2  T-S-w diagram of new ocean thermal energy conversion regenerative cycle

    图  3  新型海洋温差能回热循环系统热力计算流程图

    Fig.  3  Flowchart for thermodynamic calculation of new ocean thermal energy conversion regenerative cycle

    图  4  循环热效率和净输出功率随工质质量分数的变化

    Fig.  4  Variation of cycle thermal efficiency and net output with the change of working fluid mass fraction

    图  5  换热量和透平输出功率随工质质量分数的变化

    Fig.  5  Variation of heat transfer rate and turbine output with the change of working fluid mass fraction

    图  6  循环热效率和净输出功率随蒸发压力的变化

    Fig.  6  Variation of cycle thermal efficiency and net output with the change of evaporation pressure

    图  7  透平做功和蒸发器换热量随蒸发压力的变化

    Fig.  7  Variation of turbine output and heat transfer rate with the change of evaporation pressure

    表  1  循环系统的理论分析初始条件组合

    Tab.  1  Initial conditions for theoretical analysis of circulatory system

    工况温海水温度T/℃冷海水温度T/℃工质质量分数w蒸发压力 p/MPa
    1 26 5 0.90 0.55
    2 26 5 0.90 0.56
    3 26 5 0.90 0.57
    4 26 5 0.90 0.58
    5 26 5 0.90 0.59
    6 26 5 0.90 0.595
    7 26 5 0.90 0.60
    8 26 5 0.90 0.604
    9 26 5 0.89 0.60
    10 26 5 0.90 0.60
    11 26 5 0.905 0.60
    12 26 5 0.91 0.60
    13 26 5 0.915 0.60
    14 26 5 0.92 0.60
    15 26 5 0.93 0.60
    16 26 5 0.94 0.60
    17 26 5 0.95 0.60
    18 26 5 0.96 0.60
    19 26 5 0.97 0.60
    20 26 5 0.98 0.60
    下载: 导出CSV

    表  2  文献[12]所述工况下提出的循环各节点参数

    Tab.  2  Parameters of the proposed cycle under the conditions described in reference [12]

    节点温度
    T/K
    压力
    p/MPa
    氨质量
    分数w
    焓值h/kJ·kg−1熵值S/ kJ·kg−1K−1质量流量比/
    kg·kg−1
    1 299.20 0.85 0.90 856.69 3.40 1.00
    2 299.20 0.85 0.99 1 641.8 5.91 0.43
    3 286.33 0.67 0.99 1 610.3 5.91 0.01
    4 276.48 0.48 0.99 1 570.2 5.91 0.99
    5 281.46 0.48 0.90 767.31 3.20 1.00
    6 279.15 0.48 0.90 258.21 1.38 1.00
    7 279.15 0.48 0.90 258.21 1.38 1.00
    8 279.21 0.85 0.90 258.76 1.38 1.00
    9 282.17 0.85 0.90 272.61 1.43 1.00
    10 284.33 0.85 0.90 282.75 1.46 1.00
    11 291.75 0.85 0.90 317.79 1.58 1.00
    12 299.20 0.85 0.83 275.96 1.54 0.57
    13 286.33 0.85 0.83 215.00 1.33 0.57
    14 281.21 0.85 0.83 190.90 1.24 0.57
    下载: 导出CSV

    表  3  文献[17]所述工况下Uehara循环、Yoon循环和新循环的参数比较

    Tab.  3  Comparison of parameters of Uehara cycle, Yoon cycle and proposed cycle under the conditions described in reference [17]

    变量循环形式
    Uehara循环Yoon循环新循环
    冷凝器出口蒸气质量分数10.951
    温海水进口温度/℃262626
    冷海水进口温度/℃555
    蒸发器出口端差/℃222
    装机功率/kW202020
    透平效率0.80.80.8
    泵效率0.650.650.65
    工质质量流量/kg·h−12 8102 8006 723
    温海水质量流量/kg·h−1232 800230 500209 400
    冷海水质量流量/kg·h−1118 100116 400104 700
    工质侧压降/kPa101010
    海水侧压降/kPa505050
    工质种类H2O+NH3NH3H2O+NH3
    工质浓度/kg·kg−10.95510.91
    系统效率/%2.3792.4012.532
    下载: 导出CSV
  • [1] Khan N, Kalair A, Abas N, et al. Review of ocean tidal, wave and thermal energy technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590−604. doi: 10.1016/j.rser.2017.01.079
    [2] Hammar L, Ehnberg J, Mavume A, et al. Renewable ocean energy in the Western Indian Ocean[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4938−4950. doi: 10.1016/j.rser.2012.04.026
    [3] 丁亮, 李卉, 史学增. 基于太阳能再热循环的海洋温差发电系统性能分析与改进[J]. 中国造船, 2019, 60(S1): 171−178.

    Ding Liang, Li Hui, Shi Xuezeng. Performance analysis and improvement of solar energy reheated CC-OTEC system[J]. Shipbuilding of China, 2019, 60(S1): 171−178.
    [4] 刘伟民, 麻常雷, 陈凤云, 等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1): 1−18.

    Liu Weimin, Ma Changlei, Chen Fengyun, et al. Exploitation and technical progress of marine renewable energy[J]. Advances in Marine Science, 2018, 36(1): 1−18.
    [5] Jung J Y, Lee H S, Kim H J, et al. Thermoeconomic analysis of an ocean thermal energy conversion plant[J]. Renewable Energy, 2016, 86: 1086−1094. doi: 10.1016/j.renene.2015.09.031
    [6] Ikegami Y, Yasunaga T, Morisaki T. Ocean thermal energy conversion using double-stage Rankine cycle[J]. Journal of Marine Science and Engineering, 2018, 6(1): 21. doi: 10.3390/jmse6010021
    [7] Chen Fengyun, Liu Lei, Peng Jingping, et al. Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the Rankine cycle mode[J]. Energy, 2019, 183: 497−503. doi: 10.1016/j.energy.2019.04.008
    [8] 黄靖伦, 王辉涛, 喻智锋, 等. 非共沸混合工质有机朗肯循环余热回收系统的热力性能[J]. 中国水运, 2018, 18(8): 229−230.

    Huang Jinglun, Wang Huitao, Yu Zhifeng, et al. Thermodynamic performance of non-azeotropic mixed working fluid organic Rankine cycle waste heat recovery system[J]. China Water Transport, 2018, 18(8): 229−230.
    [9] Aydin H, Lee H S, Kim H J, et al. Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating[J]. Renewable Energy, 2014, 72: 154−163. doi: 10.1016/j.renene.2014.07.001
    [10] Kusuda E, Morisaki T, Ikegami Y. Performance test of double-stage Rankine cycle experimental plant for OTEC[J]. Procedia Engineering, 2015, 105: 713−718. doi: 10.1016/j.proeng.2015.05.061
    [11] Kalina A. Combined-cycle system with novel bottoming cycle[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 737−742. doi: 10.1115/1.3239632
    [12] Uehara H, Ikegami Y, Nishida T. Performance analysis of OTEC system using a cycle with absorption and extraction processes[J]. Transactions of the Japan Society of Mechanical Engineers, 1998, 64(624): 2750−2755. doi: 10.1299/kikaib.64.2750
    [13] Matsuda Y, Yoshitake T, Sugi T, et al. Construction of a static model for power generation of OTEC plant using uehara cycle based on experimental data[J]. Journal of Marine Science and Engineering, 2018, 6(1): 18−31. doi: 10.3390/jmse6010018
    [14] Ikegami Y, Yasunaga T, Harada H. Performance experiments on ocean thermal energy conversion system using the uehara cycle[J]. Bulletin of the Society of Sea Water Science Japan, 2006, 60(1): 32−38.
    [15] Yuan Han, Mei Ning, Yang Shuai, et al. Theoretical investigation of a power cycle using ammonia-water as working fluid[J]. Advanced Materials Research, 2014, 875−877: 1837−1841. doi: 10.4028/www.scientific.net/AMR.875-877.1837
    [16] Yuan Han, Mei Ning, Zhou Peilin. Performance analysis of an absorption power cycle for ocean thermal energy conversion[J]. Energy Conversion and Management, 2014, 87: 199−207. doi: 10.1016/j.enconman.2014.07.015
    [17] Yoon J I, Son C H, Baek S M, et al. Performance characteristics of a high-efficiency R717 OTEC power cycle[J]. Applied Thermal Engineering, 2014, 72(2): 304−308. doi: 10.1016/j.applthermaleng.2014.05.103
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  133
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-17
  • 修回日期:  2020-06-04
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回