留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素

刘晓磊 陈安铎 张红 陆杨 马路宽 贾永刚

刘晓磊,陈安铎,张红,等. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素[J]. 海洋学报,2021,43(5):127–134 doi: 10.12284/hyxb2021083
引用本文: 刘晓磊,陈安铎,张红,等. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素[J]. 海洋学报,2021,43(5):127–134 doi: 10.12284/hyxb2021083
Liu Xiaolei,Chen Anduo,Zhang Hong, et al. Rheological characteristics and its influencing factors of dense cohesive sediments in the Huanghe River subaqueous delta[J]. Haiyang Xuebao,2021, 43(5):127–134 doi: 10.12284/hyxb2021083
Citation: Liu Xiaolei,Chen Anduo,Zhang Hong, et al. Rheological characteristics and its influencing factors of dense cohesive sediments in the Huanghe River subaqueous delta[J]. Haiyang Xuebao,2021, 43(5):127–134 doi: 10.12284/hyxb2021083

黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素

doi: 10.12284/hyxb2021083
基金项目: 国家自然科学基金(41877221;42022052);山东省自然科学基金(ZR2020YQ29;ZR2019QD001);青岛海洋科学与技术国家实验室开放基金(QNLM20160RP0110)
详细信息
    作者简介:

    刘晓磊(1985-),男,山东省烟台市人,教授,博士,主要从事海洋工程地质与环境相关教学与科研工作。E-mail:xiaolei@ouc.edu.cn

  • 中图分类号: TV148

Rheological characteristics and its influencing factors of dense cohesive sediments in the Huanghe River subaqueous delta

  • 摘要: 黏性泥沙在黄河水下三角洲广泛分布,其在外部载荷作用下易引发泥沙淤积、冲刷、海床流化等问题,对港口、航道、海底管线等工程设施构成巨大威胁。利用黄河水下三角洲埕岛海域所取海底表层沉积物,制备不同固结时间和不同含水率的高浓度黏性泥沙样品。采用R/S流变仪,对所制备高浓度黏性泥沙样品进行全剪切速率下的流变试验,分析黄河水下三角洲高浓度黏性泥沙流变特性及含水率和固结时间对流变特性的影响。结果表明,高浓度黏性泥沙在剪切荷载作用下流化失稳,发生相态转化;屈服应力在固结120 min后增加了35%;含水率50%以上高浓度黏性泥沙在高剪切速率下表现出剪切增稠行为,且随含水率增加剪切增稠行为越明显;Power模型适用于含水率大于50%的高浓度黏性泥沙在高剪切速率下的流变行为。本研究可为海底黏性泥沙运动过程数值模拟与海底重力流等灾害预测提供参考。
  • 图  1  研究区浮泥分布

    Fig.  1  The distribution of fluid mud thickness in the study area

    图  2  不同含水率高浓度黏性泥沙流变曲线

    Fig.  2  Rheological curves of dense cohesive sediment with different moisture contents

    图  3  含水率45%高浓度黏性泥沙不同固结时间流变曲线

    Fig.  3  Rheological curves of dense cohesive sediment with moisture content of 45% at different consolidation times

    图  4  低剪切速率下高浓度黏性泥沙流变曲线

    Fig.  4  Rheological curve of dense cohesive sediment in low shear rate

    图  5  含水率42%高浓度黏性泥沙流变曲线及模型拟合

    Fig.  5  Rheological curve and model fitting of dense cohesive sediment with moisture content of 42%

    图  6  固结时间与流变参数拟合曲线

    Fig.  6  The fitting curve between consolidation time and rheological parameters

    图  7  不同含水率高浓度黏性泥沙双对数坐标下流变曲线

    Fig.  7  Rheological curves of dense cohesive sediment with different moisture content in logarithmic coordinates

    图  8  黏度曲线

    Fig.  8  Viscosity curve

    图  9  黏性泥沙流变曲线分段拟合

    Fig.  9  Section fitting of rheological curve of cohesive sediment

    图  10  含水率与屈服应力、稠度系数拟合曲线

    Fig.  10  The fitting curve between moisture content and rheological parameters

    表  1  原状泥沙基本物理性质

    Tab.  1  Physical properties of natural sediments

    取样点含水率/
    %
    塑限/
    %
    液限/
    %
    塑性
    指数
    含水率/
    液限
    粉粒
    含量/%
    黏粒
    含量/%
    Q147.4219.5929.8910.301.5971.027.9
    Q242.3020.1730.4410.271.3971.726.9
    Q334.8119.5730.8311.261.1372.623.4
    Q448.0818.6433.114.471.4574.322.1
    Q544.5922.130.748.641.4572.127.1
    Q642.8017.2131.2314.021.3774.321.6
    下载: 导出CSV

    表  2  R/S流变仪基本参数

    Tab.  2  Basic parameters of R/S rheometer

    精度/%可测量扭矩/ N·m角分辨率/mrad可调转速/(r·min−1)可测剪切强度/Pa转子型号
    10.05~500.80.7~1 0000~1 706V40-20
    下载: 导出CSV

    表  3  样品信息表

    Tab.  3  Information of samples

    试样编号密度/(g·cm−3)含水率/%固结时间/min
    11.52355
    21.51405
    31.50425
    41.47450, 15, 60, 120
    51.44505
    61.40555
    71.37605
    下载: 导出CSV

    表  4  各固结时间Bingham模型参数

    Tab.  4  Bingham model parameters at different consolidation times

    固结时间/minτy/Paη0R2
    057.3330.249 70.994 6
    1564.3260.258 80.996 1
    6068.1190.284 80.995 9
    12077.2450.302 60.986 1
    下载: 导出CSV

    表  5  各含水率高浓度黏性泥沙流变模型参数

    Tab.  5  Parameters of dense cohesive sediment rheological model

    含水率/%Bingham模型Power模型
    τyη0R2KnR2
    353800.5310.96
    401300.3130.99
    421070.290.99
    45440.1900.98
    低剪切速率高剪切速率
    50210.1010.990.011 21.620.98
    55110.0750.960.001 71.9700.99
    6050.0560.970.001 61.9730.99
      注:−表示无数据。
    下载: 导出CSV
  • [1] 孙连成. 淤泥质海岸天津港工程泥沙治理与功效[J]. 水运工程, 2009(4): 10−18. doi: 10.3969/j.issn.1002-4972.2009.04.003

    Sun Liancheng. Tianjin Port engineering sediment treatment and efficacy on silt coast[J]. Port & Waterway Engineering, 2009(4): 10−18. doi: 10.3969/j.issn.1002-4972.2009.04.003
    [2] 任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响——以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质, 1983, 3(4): 1−24.

    Ren Mei’e, Zhang Renshun, Yang Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province[J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1−24.
    [3] 曹祖德. 浮泥特性研究进展[J]. 水道港口, 1992(1): 34−40.

    Cao Zude. Advances in cohesive sediment research[J]. Journal of Waterway and Harbor, 1992(1): 34−40.
    [4] 贾永刚, 单红仙. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报, 2000, 11(1): 1−5. doi: 10.3969/j.issn.1003-8035.2000.01.001

    Jia Yonggang, Shan Hongxian. Investigation and study of slope unstability of subaqueous delta of modern Yellow River[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1−5. doi: 10.3969/j.issn.1003-8035.2000.01.001
    [5] 李广雪, 庄克琳, 姜玉池. 黄河三角洲沉积体的工程不稳定性[J]. 海洋地质与第四纪地质, 2000, 20(2): 21−26.

    Li Guangxue, Zhuang Kelin, Jiang Yuchi. Engineering instability of the deposition bodies in the Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2000, 20(2): 21−26.
    [6] 文明征, 王振豪, 张博文, 等. 黄河水下三角洲浮泥层分布与扰动地层调查研究[J]. 工程地质学报, 2018, 26(S1): 677−683.

    Wen Mingzheng, Wang Zhenhao, Zhang Bowen, et al. Survey on the distribution of fluid mud and disturbed strata on subaqueous Yellow River Delta[J]. Journal of Engineering Geology, 2018, 26(S1): 677−683.
    [7] 胡正红, 张婧, 刘兴年, 等. 泥石流浆体流变特性影响因素试验研究[J]. 水力发电学报, 2014, 33(2): 131−136.

    Hu Zhenghong, Zhang Jing, Liu Xingnian, et al. Experimental study on rheological properties factors of debris flow slurry[J]. Journal of Hydroelectric Engineering, 2014, 33(2): 131−136.
    [8] 戴志军, 朱文武, 李为华, 等. 近期长江口北槽河道浮泥变化及影响因素研究[J]. 泥沙研究, 2005(1): 49−54, 74.

    Dai Zhijun, Zhu Wenwu, Li Weihua, et al. Research on recent changes of fluid mud and its impacted factors in the north passage of the Changjiang Estuary[J]. Journal of Sediment Research, 2005(1): 49−54, 74.
    [9] 许宝华, 王真祥. 象山港进港航道外干门浅段试挖槽浮泥观测研究[J]. 人民长江, 2009, 40(22): 67−68. doi: 10.3969/j.issn.1001-4179.2009.22.024

    Xu Baohua, Wang Zhenxiang. Observation and research on floating mud in trial excavation section of main entrance channel of Xiangshan Port[J]. Yangtze River, 2009, 40(22): 67−68. doi: 10.3969/j.issn.1001-4179.2009.22.024
    [10] Yang W Y, Tan S K, Wang H K, et al. Rheological properties of bed sediments subjected to shear and vibration loads[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 140(1): 109−113.
    [11] Huang Zhenhua, Aode H. A laboratory study of rheological properties of mudflows in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2009, 24(4): 410−424. doi: 10.1016/S1001-6279(10)60014-5
    [12] Coussot P, Piau J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175−184. doi: 10.1007/BF00437302
    [13] 王梦寒, 王宪业, 陈思明, 等. 黏性泥沙的物理特性与起动应力的流变学分析[J]. 泥沙研究, 2018, 43(6): 8−14.

    Wang Menghan, Wang Xianye, Chen Siming, et al. Influences of physical properties of cohesive sediment on threshold shear stress based on rheological method[J]. Journal of Sediment Research, 2018, 43(6): 8−14.
    [14] 郭兴森, 年廷凯, 范宁, 等. 低温环境下南海海底泥流的流变试验及模型[J]. 岩土工程学报, 2019, 41(1): 161−167.

    Guo Xingsen, Nian Tingkai, Fan Ning, et al. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161−167.
    [15] 呼和敖德, 黄振华, 张袁备, 等. 连云港淤泥流变特性研究[J]. 力学与实践, 1994, 16(1): 21−24.

    Hu Heaode, Huang Zhenhua, Zhang Yuanbei, et al. Study on rheological characteristics of silt in Lianyungang[J]. Mechanics in Engineering, 1994, 16(1): 21−24.
    [16] 练继建, 戴丽荣, 俞波. 淤泥的几种流变模式[J]. 海河水利, 1997(4): 6−11.

    Lian Jijian, Dai Lirong, Yu Bo. Flow patterns of silting mud[J]. Haihe Water Resources, 1997(4): 6−11.
    [17] 王裕宜, 詹钱登, 严璧玉. 泥石流体的流变特性与运移特征[M]. 长沙: 湖南科学技术出版社, 2014.

    Wang Yuyi, Zhan Qiandeng, Yan Biyu. Debris-flow Rheology and Movement[M]. Changsha: Hunan Science & Technology Press, 2014.
    [18] 冯秀丽, 周松望, 林霖, 等. 现代黄河三角洲粉土触变性研究及其应用[J]. 中国海洋大学学报, 2004, 34(6): 1053−1056.

    Feng Xiuli, Zhou Songwang, Lin Lin, et al. The Thixotropy of silt in Huanghe Delta[J]. Periodical of Ocean University of China, 2004, 34(6): 1053−1056.
    [19] 刘涛, 张美鑫, 崔逢. 循环荷载下粉土液化流动特性拖球试验研究[J]. 海洋学报, 2017, 39(3): 115−121.

    Liu Tao, Zhang Meixin, Cui Feng. Dragging ball test on flow characteristics of liquefied silt under cyclic loading[J]. Haiyang Xuebao, 2017, 39(3): 115−121.
    [20] 刘涛, 崔逢, 张美鑫. 波浪作用下液化粉土流动特性拖球试验研究[J]. 海洋学报, 2016, 38(3): 123−130.

    Liu Tao, Cui Feng, Zhang Meixin. Dragging ball test on flow characteristics of liquefied silt under wave loading[J]. Haiyang Xuebao, 2016, 38(3): 123−130.
    [21] Einsele G. Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (Results from the DSDP)[J]. Marine Geology, 1990, 91(4): 267−279. doi: 10.1016/0025-3227(90)90049-P
    [22] Whitehouse R, Soulsby R, Roberts W, et al. Dynamics of estuarine muds: A manual for practical applications[M]. London: Institution of Civil Engineers, 2000.
    [23] 杨秀娟, 贾永刚. 黄河口入海泥沙沉积固结过程长期现场观测研究[J]. 岩土工程学报, 2013, 35(4): 671−678.

    Yang Xiujuan, Jia Yonggang. Long-term field observation of sediment consolidation process in Yellow River Delta, China[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 671−678.
    [24] 杨闻宇. 剪切载荷作用下高浓度粘性泥沙流变特性的实验研究[D]. 上海: 上海交通大学, 2014.

    Yang Wenyu. Experimental study on the rheological properties of dense cohesive sediments under shear loadings[D]. Shanghai: Shanghai Jiao Tong University, 2014.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  76
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-06-02
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回