Study on the structural characteristics and dynamic mechanism of faults in the Kaiping Sag of Zhujiang River Mouth Basin
-
摘要: 珠江口盆地作为南海北部陆缘勘探程度较高的含油气盆地,断裂特征分析对认识盆地演化模式和油气成藏机理至关重要。根据高分辨率地震数据和钻井资料对盆地西南部开平凹陷进行精细地震地质解释,依据断裂级别与规模将该区断裂构造类型划分为一级控盆断裂、二级控凹断裂、三级控带断裂以及四级控圈断裂;在地震剖面上识别出“Y”字型断层、阶梯状断层及卷心型断层等多种剖面组合样式;根据断裂平面分布图识别出平行式、雁列式、斜交式3种平面组合类型;定量统计断裂走向特征可知,在右旋应力场作用下,自始新世到早中新世断裂走向持续发生近NE→EW→近NW向的顺时针旋转,且断裂活动性逐渐减弱。并认为受印度‒欧亚板块碰撞、太平洋板块俯冲后撤和古南海持续南移的影响,盆地形成典型的伸展拉张应力场环境,促成始新世‒渐新世期间近NE向、EW向和中新世期间发育的近NW向3组断裂发育。对开平凹陷的地质构造特征加以解释补充,为南海北缘洋陆过渡带的发育特性和成因机制提供参考。Abstract: The Zhujiang River Mouth Basin is a petroleum-bearing basin with a high degree of exploration in the northern continental margin of the South China Sea, the analysis of fault characteristics is crucial to its basin evolution model and hydrocarbon accumulation mechanism. According to the high-resolution seismic data and drilling data, the fine seismic geological interpretation of the Kaiping Sag in the southwest of the basin is carried out. Based on the fault grade and scale, the fault structure type is divided into the first-level basin-controlled fault, the second-level sag-controlled fault and the third-level control fault based on the level and scale of faults belt fracture and four-level control ring fracture, identify “Y” shaped faults, stepped faults, and heart-shaped faults combination styles on the seismic section, identify three plane combinations of parallel, goose, and oblique based on the fault plane distribution Types of quantitative statistics of the fault strike characteristics show that under the action of the right-handed stress field, from the Eocene to the Early Miocene, the strike direction continued to rotate clockwise in the direction of NE→EW→NW, and the fracture activity gradually weakened. It is also believed that due to the impact of the Indian-Eurasian plate collision, the subduction and retreat of the Pacific plate and the continuous southward movement of the ancient South China Sea, the Zhujiang River Mouth Basin formes a typical extensional tensile stress field environment. It contributes to the development of three groups of faults in the near NE direction, the EW direction and the near-NW direction during the Eocene-Oligocene period. It provides an explanation and supplement to the geological structural characteristics of Kaiping Sag, and provides a reference for the development characteristics and genetic mechanism of the ocean-continent transition zone on the northern margin of the South China Sea.
-
Key words:
- Kaiping Sag /
- fault strike /
- faulting activity /
- stress field environment /
- formation mechanism
-
表 1 开平凹陷断裂构造演化表
Tab. 1 Evolution of fault structure in Kaiping Sag
-
[1] 张志业, 何登发, 李智, 等. 珠江口盆地开平凹陷边界断层三维几何学与运动学[J]. 地球物理学报, 2018, 61(10): 4296−4307.Zhang Zhiye, He Dengfa, Li Zhi, et al. 3D geometry and kinematics of the boundary fault in the Kaiping Depression, Pearl River Mouth Basin[J]. Chinese Journal of Geophysics, 2018, 61(10): 4296−4307. [2] Leyla B H, Zhang Junxia, Yang Linlong. Quantitative analysis of faults in Huizhou sub-basin, Pearl River Mouth Basin[J]. Journal of Earth Science, 2018, 29(1): 169−181. doi: 10.1007/s12583-018-0823-3 [3] 张迎朝, 张坤坤, 袁冰, 等. 文昌凹陷新生界断裂体系与构造样式及对油气成藏的控制作用[J]. 科学技术与工程, 2014, 14(23): 26−31.Zhang Yingzhao, Zhang Kunkun, Yuan Bing, et al. Fault system and structural style of Cenozoic and their controlling effects on hydrocarbon-forming in Wenchang sag[J]. Science Technology and Engineering, 2014, 14(23): 26−31. [4] 曹敬贺, 夏少红, 孙金龙, 等. 珠江口盆地北部断裂构造特征对比及其地质学意义[J]. 地球物理学进展, 2014(5): 2364−2369.Cao Jinghe, Xia Shaohong, Sun Jinlong, et al. Comparison of fault structure characteristics in the northern Pearl River Mouth Basin and its geological implication[J]. Progress in Geophysics, 2014(5): 2364−2369. [5] 胡小强, 唐大卿, 王嘹亮, 等. 北黄海盆地东部坳陷断裂构造分析[J]. 地质科技情报, 2017, 36(1): 117−127.Hu Xiaoqiang, Tang Daqing, Wang Liaoliang, et al. Fault structures in the eastern depression of the North Yellow Sea Basin[J]. Geological Science and Technology Information, 2017, 36(1): 117−127. [6] 漆家福, 吴景富, 马兵山, 等. 南海北部珠江口盆地中段伸展构造模型及其动力学[J]. 地学前缘, 2019, 26(2): 203−221.Qi Jiafu, Wu Jingfu, Ma Bingshan, et al. The structural model and dynamics concerning middle section, Pearl River Mouth Basin in north margin of South China Sea[J]. Earth Science Frontiers, 2019, 26(2): 203−221. [7] 张远泽, 漆家福, 吴景富. 南海北部新生代盆地断裂系统及构造动力学影响因素[J]. 地球科学, 2019, 44(2): 603−625.Zhang Yuanze, Qi Jiafu, Wu Jingfu. Cenozoic faults systems and its geodynamics of the continental margin basins in the northern of South China Sea[J]. Earth Science, 2019, 44(2): 603−625. [8] 程世秀, 李三忠, 索艳慧, 等. 南海北部新生代盆地群构造特征及其成因[J]. 海洋地质与第四纪地质, 2012, 32(6): 79−93.Cheng Shixiu, Li Sanzhong, Suo Yanhui, et al. Cenozoic tectonics and dynamics of basin groups of the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 79−93. [9] 闫义, 夏斌, 林舸, 等. 南海北缘新生代盆地沉积与构造演化及地球动力学背景[J]. 海洋地质与第四纪地质, 2005, 25(2): 53−61.Yan Yi, Xia Bin, Lin Ge, et al. The sedimentary and tectonic evolution of the basins in the north margin of the South China Sea and geodynamic setting[J]. Marine Geology & Quaternary Geology, 2005, 25(2): 53−61. [10] 王升兰, 刘晖. 珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布[J]. 科技导报, 2014, 32(28/29): 64−69.Wang Shenglan, Liu Hui. Seismic reflection and depositional system of the Enping formation in the Kaiping depression of the Zhujiangkou Basin[J]. Science & Technology Review, 2014, 32(28/29): 64−69. [11] 栾锡武, 刘鸿, 彭学超. 南海北部东沙古隆起的综合地球物理解释[J]. 地球物理学报, 2011, 54(12): 3217−3232.Luan Xiwu, Liu Hong, Peng Xuechao. The geophysical interpretation of a Dongsha ancient uplift on the northern margin of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3217−3232. [12] 张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报, 2010, 31(4): 528−533, 541.Zhang Gongcheng. Tectonic evolution of deepwater area of northern continental margin in South China Sea[J]. Acta Petrolei Sinica, 2010, 31(4): 528−533, 541. [13] 聂国权. 被动大陆边缘洋陆过渡带构造数值模拟及成因机制: 开平凹陷例析[D]. 北京: 中国地质大学(北京), 2017.Nie Guoquan. Tectonic numerical modeling and genetic mechanism for the continent-ocean transition zone of the passive continental margin: A case study of the Kaiping Sag[D]. Beijing: China University of Geosciences (Beijing), 2017. [14] 冉伟民, 栾锡武, 邵珠福, 等. 东海陆架盆地南部生长断层活动特征[J]. 海洋地质与第四纪地质, 2019, 39(1): 100−112.Ran Weimin, Luan Xiwu, Shao Zhufu, et al. Research on characteristics of growth faults in the southern East China Sea shelf basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 100−112. [15] 张豪, 栾锡武, 冉伟民, 等. 珠江口盆地西部文昌A凹陷断裂特征与成因探讨[J]. 海洋地质与第四纪地质, 2020, 40(4): 96−106.Zhang Hao, Luan Xiwu, Ran Weimin, et al. Discussion on fault characteristics and genesis of Wenchang A Sag in the west of the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 96−106. [16] 蔡华, 张建培, 唐贤君. 西湖凹陷断裂系统特征及其控藏机制[J]. 天然气工业, 2014, 34(10): 18−26.Cai Hua, Zhang Jianpei, Tang Xianjun. Characteristics of the fault systems and their control on hydrocarbon accumulation in the Xihu Sag, East China Sea Shelf Basin[J]. Natural Gas Industry, 2014, 34(10): 18−26. [17] 蔡周荣, 殷征欣, 叶军, 等. 珠江口盆地向海阶梯状断裂特征及成因分析[J]. 中国科技论文, 2015, 10(3): 322−326, 330.Cai Zhourong, Yin Zhengxin, Ye Jun, et al. Characteristics and formation mechanism of the ladder-like faults towards the sea in Pearl River Mouth Basin[J]. China Sciencepaper, 2015, 10(3): 322−326, 330. [18] 王家豪, 刘丽华, 陈胜红, 等. 珠江口盆地恩平凹陷珠琼运动二幕的构造——沉积响应及区域构造意义[J]. 石油学报, 2011, 32(4): 588−595.Wang Jiahao, Liu Lihua, Chen Shenghong, et al. Tectonic-sedimentary responses to the second episode of the Zhu-Qiong movement in the Enping Depression, Pearl River Mouth Basin and its regional tectonic significance[J]. Acta Petrolei Sinica, 2011, 32(4): 588−595. [19] 姚伯初, 万玲, 刘振湖. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J]. 地球科学—中国地质大学学报, 2004, 29(5): 543−549.Yao Bochu, Wan Ling, Liu Zhenhu. Tectonic dynamics of cenozoic sedimentary basins and hydrocarbon resources in the south China Sea[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(5): 543−549. [20] Luan Xiwu, Ran Weimin, Wang Kuo, et al. New interpretation for the main sediment source of the rapidly deposited sediment drifts on the northern slope of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 171: 118−133. doi: 10.1016/j.jseaes.2018.11.004 [21] 童亨茂. “不协调伸展”作用下裂陷盆地断层的形成演化模式[J]. 地质通报, 2010, 29(11): 1606−1613.Tong Hengmao. Fault formation and evolution model under uncoordinated extension in rift basin[J]. Geological Bulletin of China, 2010, 29(11): 1606−1613. [22] 戴一丁, 庞雄, 李平鲁. 珠江口盆地开平凹陷油气聚集条件分析[J]. 中国海上油气 (地质), 1998, 12(1): 12−18.Dai Yiding, Pang Xiong, Li Pinglu. Study on hydrocarbon accumulation in Kaiping sag of Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1998, 12(1): 12−18. [23] 魏山力. 基于地震资料的陆相湖盆“源−渠−汇”沉积体系分析——以珠江口盆地开平凹陷文昌组长轴沉积体系为例[J]. 断块油气田, 2016, 23(4): 414−418.Wei Shanli. "Source-Transportation-Sink" analysis method and application in continental lacustrine basin sedimentary system based on 2D seismic data: an example from Wenchang formation of long axis direction, Kaiping Sag, Pearl River Mouth Basin[J]. Fault-Block Oil & Gas Field, 2016, 23(4): 414−418. [24] 彭光荣, 刘从印, 吴建耀, 等. 珠江口盆地番禺4洼晚期断裂系统对油气成藏的控制作用[J]. 特种油气藏, 2013, 20(3): 41−45.Peng Guangrong, Liu Congyin, Wu Jianyao, et al. The control action of late-stage fracture system on hydrocarbon accumulation in the Panyu 4 sag in Pearl River Mouth Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(3): 41−45. [25] 毛云华, 赵中贤, 孙珍. 珠江口盆地西部陆缘伸展−减薄机制[J]. 地球科学, 2020, 45(5): 1622−1635.Mao Yunhua, Zhao Zhongxian, Sun Zhen. Extensional thinning mechanism of the western continental margin of the Pearl River Mouth Basin[J]. Earth Science, 2020, 45(5): 1622−1635. [26] 李勤英, 罗凤芝, 苗翠芝. 断层活动速率研究方法及应用探讨[J]. 断块油气田, 2000, 7(2): 15−17.Li Qinying, Luo Fengzhi, Miao Cuizhi. Research on fault activity ratio and its application[J]. Fault-Block Oil & Gas Field, 2000, 7(2): 15−17. [27] 吕彩丽, 张功成, 杨东升. 珠江口盆地珠二坳陷文昌组构造差异性与动力学成因机制[J]. 地学前缘, 2017, 24(6): 333−341.Lü Caili, Zhang Gongcheng, Yang Dongsheng. Differential structure and dynamic mechanism of Wenchang formation in the Zhu II depression of the Pearl River Mouth Basin[J]. Earth Science Frontiers, 2017, 24(6): 333−341. [28] 李俊良, 雷宝华, 郑求根, 等. 珠江口盆地文昌凹陷应力场演化及其对成藏要素的控制作用[J]. 大地构造与成矿学, 2015, 39(4): 601−609.Li Junliang, Lei Baohua, Zheng Qiugen, et al. Stress field evolution and its controls on oil accumulation in the Wenchang Sag[J]. Geotectonica et Metallogenia, 2015, 39(4): 601−609. [29] 栾锡武, 王嘉, 刘鸿, 等. 关于南海北部特提斯的讨论[J]. 地球科学, 2021, 46(3): 1−19.Luan Xiwu, Wang Jia, Liu Hong, et al. A discussion on tethys in northern margin of South China Sea[J]. Earth Science, 2021, 46(3): 1−19. [30] 栾锡武, 张亮. 南海构造演化模式: 综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 2009, 29(6): 59−74.Luan Xiwu, Zhang Liang. Tectonic evolution modes of South China Sea: passive spreading under complex actions[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 59−74. [31] 雷超, 任建业, 张静. 南海构造变形分区及成盆过程[J]. 地球科学—中国地质大学学报, 2015, 40(4): 744−762. doi: 10.3799/dqkx.2015.062Lei Chao, Ren Jianye, Zhang Jing. Tectonic province divisions in the South China Sea: Implications for basin geodynamics[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4): 744−762. doi: 10.3799/dqkx.2015.062 [32] Zhen Guan, Chen Kaiyuan, He Min, et al. Recurrent mass transport deposits and their triggering mechanisms in the Kaiping Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2016, 73: 419−432. doi: 10.1016/j.marpetgeo.2016.03.016 [33] 刘雨晴, 吴智平, 程燕君, 等. 南海北缘古近纪裂陷结构时空差异及控制因素——以珠江口盆地为例[J]. 中国矿业大学学报, 2019, 48(2): 367−376.Liu Yuqing, Wu Zhiping, Cheng Yanjun, et al. Spatial and temporal difference of Paleogene rift structure and its controlling factors in the northern South China Sea: A case study of Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology, 2019, 48(2): 367−376. [34] 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52−61.Chen Hanzong, Wu Xiangjie, Zhou Di, et al. Meso-cenozoic faults in Zhujiang River Mouth Basin and their geodynamic backgroud[J]. Journal of Tropical Oceanography, 2005, 24(2): 52−61.