Quantifying sediment fluxes from continental shelf islands
-
摘要: 大陆岛入海沉积物通量(Qs)信息对于精确解译大陆架沉积记录的研究是个重要补充。针对如何估算大陆岛Qs的科学问题,本文以中国东南部海域的8 227个大陆岛为例,提出了一种基于邻近大陆中小型河流Qs的经验公式计算大陆岛Qs的解决方案。该方案在实施时需设置两个假定,即大陆岛的Qs法则遵循邻近大陆中小河流的Qs法则和可将1个大陆岛当作1个河流流域计算其Qs。结果表明:(1)经验公式计算的大陆岛Qs为其最小估计值;如考虑大陆岛流域的具体情况,实际的Qs值会稍微增加,但其增幅不超过n0.13(n为流域数量);(2)经验公式能获取大陆岛Qs的大致数量级信息;大陆岛的总面积为4 418.49 km2,对应Qs的数量级为106 t/a,与邻近大陆中型河流入海通量的数量级相当;(3)在大河河口湾充填阶段完成以前,大陆岛沉积物是内陆架泥质沉积体的主要物源之一。因此,大陆岛入海沉积物会对大陆架沉积体系的形成和演化造成一定程度的影响,需引起研究人员的高度重视。Abstract: The information on sediment flux (Qs) from continental shelf islands is an important supplement to the study of accurate records interpretation of continental shelf sedimentary systems. Aiming at the scientific problem of how to estimate the Qs of continental islands, this paper proposes a solution to calculate their Qs based upon the empirical formula of small and medium-sized rivers in adjacent continent, taking the 8227 continental islands in Southeast China as examples. Two preconditions are set up to perform the calculation. That is, the Qs rule of the continental islands follows the rule of the small and medium-sized rivers in adjacent continent, and a continental island can be treated as a river basin to calculate its Qs. The results show that: (1) the Qs calculated by empirical formula is the minimum estimated value; if the actual basins of the continental island are taking into considered, the Qs value will slightly increase, but the increase will not exceed n0.13 (n is the number of basins); (2) the empirical formula give the approximate magnitude information of Qs for continent islands; the total area of the continental islands is 4418.49 km2, and the corresponding order of magnitude of Qs is 106 t/a; (3) during the completion of the estuarine filling stage, the continental island sediment is one of the main source for the inner continental shelf areas. Therefore, more attentions and researches are expected to the role play by the continental shelf islands to the formation and evolution of continental shelf depositional systems.
-
表 1 研究区26条河流特征参数特征值统计表
Tab. 1 Statistic of characteristics values of the 26 coastal rivers
编号 河流名称 流域面积/km2 最大高程/m 平均气温/℃ 水文站 集水面积/km2 Qs/ (104 t·a−1) Q/108 m3 时间段 主要参考文献 1 钱塘江 55 558 1 865 17.0 兰溪 18 233 155.95 314.4 1960–1979 [35] 2 椒江–永安溪 2 704 1 382 17.2 柏枝岙 2 475 42.32 22.10 1960–1979 [35] 3 椒江–始丰溪 1 610 1 144 16.8 沙段 1 482 33.31 10.40 1960–1979 [35] 4 瓯江 18 100 1 929 19.0 鹤城 13 400 195.15 133.75 1960–1979 [35] 5 飞云江 3 719 1 690 16.3 峃口 1 930 33.43 22.20 1960–1979 [35] 6 鳌江 1 530 1 232 18.5 埭头 343 6.38 4.91 1960–1979 [35] 7 水北溪 425 1 141 18.4 高滩 341 6.51 4.12 1970–1979 [37] 8 赛江 5 638 1 649 16.9 白塔 3 270 58.35 40.55 1960–1979 [37] 9 霍童溪 2 244 1 627 15.5 洋中坂 2 082 31.49 24.78 1960–1979 [37] 10 闽江 60 992 2 158 18.0 竹岐 54 500 748.00 539.00 1950–1978 [38] 11 木兰溪 1 732 1 451 20.0 濑溪 1 070 29.30 9.85 1959–1979 [39] 12 晋江 5 629 1 600 20.5 石砻 5 460 217.28 50.04 1950–1979 [40] 13 九龙江–北溪 9 640 1 823 20.5 浦南 8 490 166.72 82.41 1952–1979 [40] 14 九龙江–西溪 3 940 1 666 21.1 郑店 3 419 73.90 36.37 1952–1979 [40] 15 黄冈河 1 621 784 21.4 红霞 1 270 30.60 13.00 1956–1961 [34] 16 韩江 30 112 1 823 20.8 潮安 29 077 703.44 237.10 1955–1979 [41] 17 榕江 4 650 1 285 21.4 东桥园 2 016 65.40 28.10 1949–1979 [34] 18 东江 27 040 1 529 20.4 博罗 25 325 296.00 224.67 1954–1979 [42] 19 北江 46 710 1 929 20.0 石角 38 363 532.67 406.57 1954–1979 [42] 20 漠阳河 6 091 1 337 22.2 双捷 4 345 80.00 59.10 1954–1979 [34] 21 鉴江 6 948 1 703 22.0 化州 6 157 197.00 49.60 1953–1979 [43] 22 九洲江 3 337 596 22.3 缸瓦窑 3 086 34.00 18.40 1953–1979 [44] 23 南流河 9 232 1 257 22.0 长乐 6 592 115.00 52.79 1956–1979 [45] 24 南渡江 7 033 1 811 24.0 龙塘 6 841 44.99 59.98 1957–1979 [36] 25 昌化江 5 150 1 867 23.9 宝桥 4 634 83.88 37.99 1957–1979 [36] 26 万泉河 3 693 1 867 23.5 加积 3 236 52.97 49.89 1957–1979 [36] 表 2 沉积物入海通量(Qs,单位:Mt/a)经验公式
Tab. 2 Prediction equations of sediment flux (Qs, unit: Mt/a)
方程 全球公式 修正公式 备注 Model 1 Qs=65A0.56 Qs=112.88A0.91 A为流域面积(106 km2) Model 2 Qs=α10(0.41lg(A)+1.28lg(R)−3.68) Qs=α10(0.87lg(A)+0.31lg(R)−2.73) α为经验常数0.0315,A为流域面积(km2),R为最大高程(m) Model 3 Qs=2αA0.45R0.57e−0.09T Qs=2αA0.96R−0.72e−0.01T α为经验常数0.0315,A为流域面积(km2),R为最大高程(m),T为平均气温(℃) 表 3 “海南岛”Qs观测值、预测值和相对误差统计表
Tab. 3 Relative errors between the sediment flux predicted by the modified equations and observations of rivers in the Hainan Island
河流 观测值/(Mt·a−1) Model 1 Model 2 Model 3 预测值/(Mt·a−1) RE 预测值/(Mt·a−1) RE 预测值/(Mt·a−1) RE 南渡江 0.45 1.23 1.72 1.29 1.87 1.02 1.27 昌化江 0.84 0.86 0.03 0.93 0.11 0.69 −0.18 万泉河 0.53 0.62 0.17 0.68 0.28 0.49 −0.07 3条河流均值 0.61 0.90 0.64 0.97 0.75 0.73 0.34 “海南岛” 1.82 2.46 0.35 2.53 0.39 2.09 0.15 表 4 东海和南海内陆架泥质沉积体系陆源供给特征(表中数值均指数量级)
Tab. 4 Sediment sources characteristics of the mud sedimentary systems in inner continental shelf of East China Sea and South China Sea (the values in the table refer to order of magnitude)
物源 数量/(条·个−1) A/km2 R/m Qs/(t·a−1) 空间特征 时间特征 大型河流 100 106~107 103 107~108 沿大陆岸线有限点源、长距离 近2 000 a 中小河流 101 102~104 102~103 104~106 沿大陆岸线多点源、中距离 持续供给 大陆岛 103 ≤102 ≤102 100~105 沿海岛岸线密集点源、短距离 持续供给 -
[1] Whittaker R J, Fernández-Palacios J M. Island Biogeography: Ecology, Evolution, and Conservation[M]. Oxford: Oxford University Press, 2007. [2] Stankowski S, Johnson M S. Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails[J]. BMC Evolutionary Biology, 2014, 14(1): 1−13. doi: 10.1186/1471-2148-14-2 [3] 夏小明. 中国海岛(礁)名录[M]. 北京: 海洋出版社, 2012.Xia Xiaoming. China Island (Reef) List[M]. Beijing: China Ocean Press, 2012. [4] Baldacchino G. Archipelago Tourism: Policies and Practices[M]. London: Routledge, 2015. [5] Kurniawan F, Adrianto L, Bengen D G, et al. Vulnerability assessment of small islands to tourism: The case of the Marine Tourism Park of the Gili Matra Islands, Indonesia[J]. Global Ecology and Conservation, 2016, 6: 308−326. doi: 10.1016/j.gecco.2016.04.001 [6] Blackburn D C, Siler C D, Diesmos A C, et al. An adaptive radiation of frogs in a southeast Asian island archipelago[J]. Evolution, 2013, 67(9): 2631−2646. doi: 10.1111/evo.12145 [7] Whittaker R J, Fernández-Palacios J M, Matthews T J, et al. Island biogeography: Taking the long view of nature’s laboratories[J]. Science, 2017, 357(6354): eaam8326. doi: 10.1126/science.aam8326 [8] Ogasawara K. Neogene paleogeography and marine climate of the Japanese Islands based on shallow-marine molluscs[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 335−351. [9] Bover P, Quintana J, Alcover J A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands[J]. Quaternary International, 2008, 182(1): 135−144. doi: 10.1016/j.quaint.2007.06.039 [10] Nittrouer C A, Kuehl S A, Demaster D J, et al. The deltaic nature of Amazon shelf sedimentation[J]. Geological Society of America Bulletin, 1986, 97(4): 444−458. doi: 10.1130/0016-7606(1986)97<444:TDNOAS>2.0.CO;2 [11] Kuehl S A, Levy B M, Moore W S, et al. Subaqueous delta of the Ganges-Brahmaputra river system[J]. Marine Geology, 1997, 144(1/3): 81−96. [12] Cattaneo A, Correggiari A, Langone L, et al. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations[J]. Marine Geology, 2003, 193(1/2): 61−91. [13] Neill C F, Allison M A. Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana[J]. Marine Geology, 2005, 214(4): 411−430. doi: 10.1016/j.margeo.2004.11.002 [14] Liu J P, Xue Z, Ross K, et al. Fate of sediments delivered to the sea by Asian large rivers: Long-distance transport and formation of remote alongshore clinothems[J]. The Sedimentary Record, 2009, 7(4): 4−9. doi: 10.2110/sedred.2009.4.4 [15] Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562−573. doi: 10.1016/j.jseaes.2015.07.024 [16] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145Li Anchun, Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145 [17] 高抒. 中国东部陆架全新世沉积体系: 过程-产物关系研究进展评述[J]. 沉积学报, 2013, 31(5): 845−855.Gao Shu. Holocene sedimentary systems over the Bohai, Yellow and East China Sea region: Recent progress in the study of process-product relationships[J]. Acta Sedimentologica Sinica, 2013, 31(5): 845−855. [18] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268−294. doi: 10.1016/j.margeo.2014.03.021 [19] Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85−113. doi: 10.1029/93RG02603 [20] Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2−16. doi: 10.1016/j.margeo.2018.04.005 [21] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525−544. doi: 10.1086/629606 [22] Syvitski J P M, Peckham S D, Hilberman R, et al. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective[J]. Sedimentary Geology, 2003, 162(1/2): 5−24. [23] Li G C, Gao S, Wang Y P, et al. Sediment flux from the Zhoushan Archipelago, eastern China[J]. Journal of Geographical Sciences, 2018, 28(4): 387−399. doi: 10.1007/s11442-018-1479-8 [24] Ahnert F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins[J]. American Journal of Science, 1970, 268(3): 243−263. doi: 10.2475/ajs.268.3.243 [25] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295−303. doi: 10.1086/648222 [26] Holeman J N. The sediment yield of major rivers of the world[J]. Water Resources Research, 1968, 4(4): 737−747. doi: 10.1029/WR004i004p00737 [27] 汪亚平, 潘少明, Wang H V, 等. 长江口水沙入海通量的观测与分析[J]. 地理学报, 2006, 61(1): 35−46. doi: 10.3321/j.issn:0375-5444.2006.01.004Wang Yaping, Pan Shaoming, Wang H V, et al. Measurements and analysis of water discharges and suspended sediment fluxes in Changjiang Estuary[J]. Acta Geographica Sinica, 2006, 61(1): 35−46. doi: 10.3321/j.issn:0375-5444.2006.01.004 [28] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1−21. doi: 10.1086/628741 [29] Li G C, Zhou L, Qi Y L, et al. Threshold sediment flux for the formation of river deltas in Hainan Island, southern China[J]. Journal of Geographical Sciences, 2019, 29(1): 146−160. doi: 10.1007/s11442-019-1589-y [30] Mulder T, Syvitski J P M. Climatic and morphologic relationships of rivers: Implications of sea-level fluctuations on river loads[J]. The Journal of Geology, 1996, 104(5): 509−523. doi: 10.1086/629849 [31] Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1−19. doi: 10.1086/509246 [32] Milliman J D, Farnsworth K L, Albertin C S. Flux and fate of fluvial sediments leaving large islands in the East Indies[J]. Journal of Sea Research, 1999, 41(1/2): 97−107. [33] Li Gaocong, Xia Qiong, Fu Dongyang, et al. Calculating the sediment flux of the small coastal watersheds: A modification of global equations[J]. Acta Oceanologica Sinica, 2021, 40(1): 147−154. doi: 10.1007/s13131-020-1615-z [34] 王文介, 黄金森, 毛树珍, 等. 华南沿海和近海现代沉积[M]. 北京: 科学出版社, 1991.Wang Wenjie, Huang Jinsen, Mao Shuzhen, et al. Modern Deposition of Coastal and Offshore in South China[M]. Beijing: Science Press, 1991. [35] 张伯虎, 吴修广, 谢东凤. 近50年来浙江入海河流水沙通量变化过程[J]. 泥沙研究, 2015(6): 21−26.Zhang Bohu, Wu Xiuguang, Xie Dongfeng. Variation of water and sediment in rivers to sea in recent five decades in Zhejiang Province[J]. Journal of Sediment Research, 2015(6): 21−26. [36] 杨志宏, 贾建军, 王欣凯, 等. 近50年海南三大河入海水沙通量特征及变化[J]. 海洋通报, 2013, 32(1): 92−99. doi: 10.11840/j.issn.1001-6392.2013.01.014Yang Zhihong, Jia Jianjun, Wang Xinkai, et al. Characteristics and variations of water and sediment fluxes into the sea of the top three rivers of Hainan in recent 50 years[J]. Marine Science Bulletin, 2013, 32(1): 92−99. doi: 10.11840/j.issn.1001-6392.2013.01.014 [37] 陈胜晶. 福建闽东诸小河泥沙及其变化分析[J]. 亚热带水土保持, 2007, 19(4): 20−23. doi: 10.3969/j.issn.1002-2651.2007.04.006Chen Shengjing. Analysis on the sediment status and changes in the streams of the east Fujian Province[J]. Subtropical Soil and Water Conservation, 2007, 19(4): 20−23. doi: 10.3969/j.issn.1002-2651.2007.04.006 [38] 张章新. 闽江流域水文特性分析[J]. 水文, 2000, 20(6): 55−58. doi: 10.3969/j.issn.1000-0852.2000.06.017Zhang Zhangxin. Analysis of hydrological characteristics of Minjiang River basin[J]. Hydrology, 2000, 20(6): 55−58. doi: 10.3969/j.issn.1000-0852.2000.06.017 [39] 陈斌. 木兰溪下游水沙特性及河道演变[J]. 水利科技, 1988(1): 47−51.Chen Bin. Water and sediment characteristics and channel evolution in the lower reach of the Mulan River[J]. Hydraulic Science and Technology, 1988(1): 47−51. [40] 邵恒方. 福建三大河流沙量及其变化分析[J]. 福建水土保持, 1991(1): 42−46.Shao Hengfang. Variation on sediment load of three major rivers of Fujian Province, China[J]. Fujian Soil and Water Conservation, 1991(1): 42−46. [41] 杨传训, 张正栋, 张倩, 等. 1955−2012年韩江入海径流量和输沙量多尺度变化特征[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 68−75.Yang Chuanxun, Zhang Zhengdong, Zhang Qian, et al. Characteristics of multi-scale variability of water discharge and sediment load in the Hanjiang River during 1955−2012[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 68−75. [42] Zhang Wei, Mu Shousheng, Zhang Yanjing, et al. Temporal variation of suspended sediment load in the Pearl River due to human activities[J]. International Journal of Sediment Research, 2011, 26(4): 487−497. doi: 10.1016/S1001-6279(12)60007-9 [43] 黄志明. 鉴江流域水文特性分析[J]. 现代科技, 2010, 9(3): 33, 37−39.Huang Zhiming. Hydrological characteristics of the Jian River Catchment[J]. Modern Science and Technology, 2010, 9(3): 33, 37−39. [44] 谢天. 九洲江流域“2013·08”暴雨洪水特性分析[J]. 甘肃水利水电技术, 2013, 49(11): 6−8.Xie Tian. On the stormy flood characteristics of the Jiuzhou River Catchment during the August 2013[J]. Gansu Water Resources and Hydropower Technology, 2013, 49(11): 6−8. [45] 徐国琼, 欧芳兰. 南流江泥沙运动规律及其与人类活动的关联[C]//中国水力发电工程学会水文泥沙专业委员会第七届学术讨论会论文集. 成都: 四川出版集团·四川科学技术出版社, 2007: 69−75.Xu Guoqiong, Ou Fanglan. Sediment dynamics of the Nanliu River and its relationship with human activities[C]//The 2007 Symposium of the China Hydroelectric Engineering Society of Hydrology and Sediment. Chengdu: Sichuan Publishing Group, Sichuan Science and Technology Press, 2007: 69−75. [46] Xie Dongfeng, Pan Cunhong, Wu Xiuguang, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2999−3020. doi: 10.1002/2016JC012264 [47] Xu Kehui, Li Anchun, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291−294: 176−191. doi: 10.1016/j.margeo.2011.06.003 [48] Liu J T, Hsu R T, Yang R J, et al. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast[J]. Scientific Reports, 2018, 8(1): 4229. doi: 10.1038/s41598-018-22696-w [49] Liu Yunling, Gao Shu, Wang Yaping, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea[J]. Marine Geology, 2014, 347: 43−57. doi: 10.1016/j.margeo.2013.10.012 [50] Gao Shu. Holocene shelf-coastal sedimentary systems associated with the Changjiang River: An overview[J]. Acta Oceanologica Sinica, 2013, 32(12): 4−12. doi: 10.1007/s13131-013-0390-5 [51] Zhang Xia, Lin Chunming, Dalrymple R W, et al. Facies architecture and depositional model of a macrotidal incised-valley succession (Qiantang River Estuary, eastern China), and differences from other macrotidal systems[J]. Geological Society of America Bulletin, 2014, 126(3/4): 499−522. [52] Trenhaile A S. The Geomorphology of Rock Coasts[M]. Oxford: Clarendon Press, 1987.