留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台湾海峡南部海域好氧不产氧光合异养细菌对上升流的响应

陈瑶 张瑶 焦念志

陈瑶,张瑶,焦念志. 台湾海峡南部海域好氧不产氧光合异养细菌对上升流的响应[J]. 海洋学报,2021,43(6):98–107 doi: 10.12284/hyxb2021068
引用本文: 陈瑶,张瑶,焦念志. 台湾海峡南部海域好氧不产氧光合异养细菌对上升流的响应[J]. 海洋学报,2021,43(6):98–107 doi: 10.12284/hyxb2021068
Chen Yao,Zhang Yao,Jiao Nianzhi. Response of aerobic anoxygenic phototrophic bacteria to upwelling in the southern Taiwan Strait of China[J]. Haiyang Xuebao,2021, 43(6):98–107 doi: 10.12284/hyxb2021068
Citation: Chen Yao,Zhang Yao,Jiao Nianzhi. Response of aerobic anoxygenic phototrophic bacteria to upwelling in the southern Taiwan Strait of China[J]. Haiyang Xuebao,2021, 43(6):98–107 doi: 10.12284/hyxb2021068

台湾海峡南部海域好氧不产氧光合异养细菌对上升流的响应

doi: 10.12284/hyxb2021068
基金项目: 科技部重点研发计划(2016YFA0601400)
详细信息
    作者简介:

    陈瑶(1980-),女,浙江省永康市人,博士,主要研究方向为海洋生态学。E-mail:baby_680@126.com

    通讯作者:

    张瑶,教授,博士生导师,主要研究方向为微生物海洋学。E-mail: yaozhang@xmu.edu.cn

    焦念志,中国科学院院士,主要研究海洋微型生物碳泵、海洋微型生物生理生态、分子生态学以及相关的资源环境效应。E-mail: jiao@xmu.edu.cn

  • 中图分类号: P714+.5

Response of aerobic anoxygenic phototrophic bacteria to upwelling in the southern Taiwan Strait of China

  • 摘要: 国内外关于好氧不产氧光合异养细菌(AAPB)和上升流之间关系的研究甚少。本文采用“基于蓝细菌校正的时序红外显微技术”研究了台湾海峡南部近岸上升流中心区AAPB对上升流变化的响应。研究结果发现,在上升流涌升的初始阶段,AAPB和总异养细菌丰度较低;随着上升流的发展,两者丰度均增加并在上升流的成熟期达到最高值;而当上升流衰退时,AAPB和总异养细菌丰度开始下降。在上升流发展过程中,AAPB丰度与叶绿素a浓度在一定范围内呈显著正相关,但同时受环境低磷浓度的限制,总异养细菌丰度与氮、磷、硅营养盐均有显著正相关,表明叶绿素a指示的浮游植物所释放的溶解有机碳和环境中的磷限制可能对AAPB起着更为直接和重要的作用,而营养盐则可能在总异养细菌对上升流的响应中起着重要作用。本研究有助于我们理解AAPB在碳及其他生源要素循环中的作用及其调控机制。
  • 图  1  台湾海峡站位

    Fig.  1  Location of the stations in the Taiwan Strait

    图  2  台湾海峡南部海域大面站温度(单位:°C)和盐度的垂直分布

    Fig.  2  Vertical distribution of temperature (unit: °C) and salinity in the southern Taiwan Strait

    图  3  B1站位温度(a)和盐度(b)剖面动态变化

    Fig.  3  Variation of temperature (a) and salinity (b) at Station B1

    图  4  台湾海峡南部海域大面站营养盐浓度(单位:μmol/L)的垂直分布

    Fig.  4  Vertical distribution of nutrients concentration (uint: μmol/L) in the southern Taiwan Strait

    图  5  B1站位营养盐浓度(单位:μmol/L)的剖面动态变化

    a. 硝酸盐; b. 亚硝酸盐; c. 铵盐; d. 磷酸盐; e. 硅酸盐

    Fig.  5  Variation of nutrients concentration (unit: μmol/L) at Station B1

    a. $ {{\rm {NO}}_3^-} $-N; b. $ {{\rm {NO}}_2^-} $-N; c. $ {{\rm {NH}}_4^+} $-N; d. $ {{\rm {PO}}_4^{3-}} $-P; e. $ {{\rm {SiO}}_3^{2-}} $-Si

    图  6  B1站位叶绿素a浓度(单位:μg/L)(a)、AAPB丰度(单位:cell/mL)(b)、总异养细菌丰度(单位:cell/mL)(c)和AAPB%(d)的剖面动态变化

    Fig.  6  Variation of chlorophyll a concentration (unit: μg/L) (a), AAPB abundance (unit: cell/mL) (b), total bacterial abundance (unit: cell/mL) (c) and AAPB% (d) at Station B1

    图  7  台湾海峡南部海域上升流事件中AAPB丰度(a)、总异养细菌丰度(b)和叶绿素a浓度的相关关系

    实心圆代表叶绿素a浓度较低的站位,AAPB丰度与叶绿素a浓度显著正相关;空心圆代表叶绿素a浓度较高的站位,AAPB和总异养细菌丰度与叶绿素a浓度无相关性

    Fig.  7  Plots of AAPB abundance (a) and total bacterial abundance (b) vs chlorophyll a concentration in the development of upwelling in the southern Taiwan Strait

    The solid circles represent the stations with low chlorophyll a concentration where AAPB abundance is positively correlate with chlorophyll a concentration; the open circles represent the stations with high chlorophyll a concentration where AAPB abundance and total bacterial abundance display little correlation with chlorophyll a concentration

  • [1] Shiba T, Simidu U, Taga N. Distribution of aerobic bacteria which contain bacteriochlorophyll a[J]. Applied and Environmental Microbiolgy, 1979, 38(1): 43−45. doi: 10.1128/AEM.38.1.43-45.1979
    [2] Kolber Z S, Plumley F G, Lang A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J]. Science, 2001, 292(5526): 2492−2495. doi: 10.1126/science.1059707
    [3] Rathgeber C, Beatty J T, Yurkov V. Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group[J]. Photosynthesis Research, 2004, 81(2): 113−128. doi: 10.1023/B:PRES.0000035036.49977.bc
    [4] Ruiz-González C, Garcia-Chaves M C, Ferrera I, et al. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation[J]. Molecular Ecology, 2020, 29(7): 1267−1283. doi: 10.1111/mec.15404
    [5] Sato-Takabe Y, Hirose S, Hori T, et al. Abundance and spatial distribution of aerobic anoxygenic phototrophic bacteria in Tama River, Japan[J]. Water, 2020, 12(1): 150. doi: 10.3390/w12010150
    [6] Ferrera I, Sarmento H, Priscu J C, et al. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient[J]. Frontiers in Microbiology, 2017, 8: 175.
    [7] Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs[J]. Photosynthesis Research, 2016, 128(1): 35−43. doi: 10.1007/s11120-015-0197-7
    [8] Sato-Takabe Y, Nakao H, Kataoka T, et al. Abundance of common aerobic anoxygenic phototrophic bacteria in a coastal aquaculture area[J]. Frontiers in Microbiology, 2016, 7: 1996.
    [9] Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments[J]. FEMS Microbiology Reviews, 2015, 39(6): 854−870. doi: 10.1093/femsre/fuv032
    [10] Jiao Nianzhi, Zhang Yao, Zeng Yonghui, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean[J]. Environmental Microbiology, 2007, 9(12): 3091−3099. doi: 10.1111/j.1462-2920.2007.01419.x
    [11] Lami R, Cottrell M T, Ras J, et al. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean[J]. Applied and Environmental Microbiology, 2007, 73(13): 4198−4205. doi: 10.1128/AEM.02652-06
    [12] Liu Rulong, Zhang Yao, Jiao Nianzhi. Diel variations in frequency of dividing cells and abundance of aerobic anoxygenic phototrophic bacteria in a coral reef system of the South China Sea[J]. Aquatic Microbial Ecology, 2010, 58(3): 303−310.
    [13] Hojerová E, Mašín M, Brunet C, et al. Distribution and growth of aerobic anoxygenic phototrophs in the Mediterranean Sea[J]. Environmental Microbiology, 2011, 13(10): 2717−2725. doi: 10.1111/j.1462-2920.2011.02540.x
    [14] Sato-Takabe Y, Hamasaki K, Suzuki S. High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater[J]. Microbiologyopen, 2019, 8(5): e00710. doi: 10.1002/mbo3.710
    [15] Kolářová E, Medová H, Piwosz K, et al. Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov[J]. Folia Microbiologica, 2019, 64(5): 705−710. doi: 10.1007/s12223-019-00735-x
    [16] 洪华生, 丘书院, 阮五崎, 等. 闽南−台湾浅滩渔场上升流区生态系研究[M]. 北京: 科学出版社, 1991.

    Hong Huasheng, Qiu Shuyuan, Ruan Wuqi, et al. Minnan−Taiwan Bank Fishing Ground Upwelling Ecosystem Study[M]. Beijing: China Science Press, 1991.
    [17] Wang Dazhi, Hong Huasheng, Huang Bangqin, et al. Phytoplankton biomass (Chl-a) in the Taiwan Strait (1997−1999)[J]. Chinese Journal of Oceanology Limnology, 2002, 20: 33−46.
    [18] 王玉珏. 台湾海峡上升流区浮游植物对氮营养盐的生理生态响应[D]. 厦门: 厦门大学, 2007.

    Wang Yujue. Physiological-ecological responses of phytoplankton to nitrogenous nutrients in the Taiwan Strait upwelling area[D]. Xiamen: Xiamen University, 2007.
    [19] Shang Shaoling, Zhang Caiyun, Hong Huasheng, et al. Hydrographic and biological changes in the Taiwan Strait during the 1997−1998 El Niño winter[J]. Geophysical Research Letters, 2005, 32(11): L11601. doi: 10.1029/2005GL022578
    [20] 张彩云. 台湾海峡叶绿素a对海洋环境多尺度时间变动的响应研究[D]. 厦门: 厦门大学, 2006.

    Zhang Caiyun. Response of chlorophyll a concentrations to multi-scale environmental variations in the Taiwan Strait[D]. Xiamen: Xiamen University, 2006.
    [21] Bak R P M, Nieuwland G. Seasonal variation in bacterial and flagellate communities of deep-sea sediments in a monsoonal upwelling system[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44(6/7): 1281−1292.
    [22] Caffrey J M, Hollibaugh J T, Bano N, et al. Effects of upwelling on short-term variability in microbial and biogeochemical processes in estuarine sediments from Elkhorn Slough, California, USA[J]. Aquatic Microbial Ecology, 2010, 58(3): 261−271.
    [23] Cuevasa L A, Daneri G, Jacob B, et al. Microbial abundance and activity in the seasonal upwelling area off Concepción (~36°S), central Chile: a comparison of upwelling and non-upwelling conditions[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51(20/21): 2427−2440.
    [24] Huang Bangqin, Hong Huasheng, Wang Haili. Size-fractionated primary productivity and the phytoplankton-bacteria relationship in the Taiwan Strait[J]. Marine Ecology Progress Series, 1999, 183: 29−38. doi: 10.3354/meps183029
    [25] Huang Bangqin, Lin Xueju, Hong Huasheng. Spatial and temporal variations of Synechococcus and picoeukaryotes in the Taiwan Strait, China[J]. Chinese Journal of Oceanology Limnology, 2009, 27(1): 22−30. doi: 10.1007/s00343-009-0022-2
    [26] Kerkhof L J, Voytek M A, Sherrell R M, et al. Variability in bacterial community structure during upwelling in the coastal ocean[J]. Hydrobiologia, 1999, 401: 139−148. doi: 10.1023/A:1003734310515
    [27] Kuznar J, Espinoza J C, Avaria S, et al. Microbiological effects produced by a coastal upwelling off central Chile[J]. Revista ole Biologia Marinay Oceanografia, 2009, 44(1): 189−196.
    [28] Montero P, Daneri G, Cuevas L A, et al. Productivity cycles in the coastal upwelling area off concepcion: the importance of diatoms and bacterioplankton in the organic carbon flux[J]. Progress in Oceanography, 2007, 75(3): 518−530. doi: 10.1016/j.pocean.2007.08.013
    [29] Zdanowski M K, Figueiras F G. CFU bacterial fraction in the estuarine upwelling ecosystem of Ria de Vigo, Spain: variability in abundance and their ecophysiological description[J]. Marine Ecology Progress Series, 1999, 182: 1−15. doi: 10.3354/meps182001
    [30] Zheng Tianling, Hong Huasheng, Wang Fei, et al. The distribution characteristics of bacterial β-glucosidase activity in Taiwan strait[J]. Marine Pollution Bulletin, 2002, 45(1−12): 168−176.
    [31] Cuadrat R R C, Ferrera I, Grossart H P, et al. Picoplankton bloom in global south? A high fraction of aerobic anoxygenic phototrophic bacteria in metagenomes from a coastal bay (Arraial do Cabo-Brazil)[J]. Omicsia Journal of Intergrative Biology, 2016, 20(2): 76−87. doi: 10.1089/omi.2015.0142
    [32] Jiao Nianzhi, Zhang Yao, Chen Yao. Time series observation based InfraRed Epifluorescence Microscopic (TIREM) approach for accurate enumeration of bacteriochlorophyll-containing microbes in marine environments[J]. Journal of Micro Biological Methods, 2006, 65(3): 442−452. doi: 10.1016/j.mimet.2005.09.002
    [33] Zhang Yao, Jiao Nianzhi. Method for quantification of aerobic anoxygenic phototrophic bacteria[J]. Chinese Science Bulletin, 2004, 49(6): 597−599. doi: 10.1360/03wc0447
    [34] Schwalbach M S, Fuhrman J A. Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR[J]. Limnology and Oceanography, 2005, 50(2): 620−628. doi: 10.4319/lo.2005.50.2.0620
    [35] Zhang Yao, Jiao Nianzhi. Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea[J]. FEMS Microbiology Ecology, 2007, 61(3): 459−469. doi: 10.1111/j.1574-6941.2007.00355.x
    [36] Zhang Yao, Jiao Nianzhi, Hong Ning. Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(14/15): 1605−1614.
    [37] Jiang Hongchen, Dong Hailiang, Yu Bingsong, et al. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau[J]. FEMS Microbiology Ecology, 2009, 67(2): 268−278. doi: 10.1111/j.1574-6941.2008.00616.x
    [38] Chen Yao, Zhang Yao, Jiao Nianzhi. Responses of aerobic anoxygenic phototrophic bacteria to algal blooms in the East China Sea[J]. Hydrobiologia, 2011, 661(1): 435−443. doi: 10.1007/s10750-010-0553-8
    [39] Mentes A, Szabó A, Somogyi B, et al. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake[J]. FEMS Microbiology Ecology, 2018, 94(2): fix164.
    [40] Korponai K, Szabó A, Somogyi B, et al. Dual bloom of green algae and purple bacteria in an extremely shallow soda pan[J]. Extremophiles, 2019, 23(4): 467−477. doi: 10.1007/s00792-019-01098-4
    [41] Szabó-Tugyi N, Vörös L, Balogh K V, et al. Aerobic anoxygenic phototrophs are highly abundant in hypertrophic and polyhumic waters[J]. FEMS Microbiology Ecology, 2019, 95(8): fiz104. doi: 10.1093/femsec/fiz104
    [42] Zhang Fei, Liu Jihua, Li Qiang, et al. The research of typical microbial functional group reveals a new oceanic carbon sequestration mechanism-A case of innovative method promoting scientific discovery[J]. Science China Earth Science, 2016, 59(3): 456−463. doi: 10.1007/s11430-015-5202-7
    [43] 胡俊. 台湾海峡南部浮游植物类群组成及其对上升流的响应研究[D]. 厦门: 厦门大学, 2009.

    Hu Jun. Studies on phytoplankton community structure and its responses to upwelling in southern Taiwan Strait[D]. Xiamen: Xiamen University, 2009.
    [44] Hu Jun, Lan Wenlu, Huang Bangqin, et al. Low nutrient and high chlorophyll a coastal upwelling system—A case study in the southern Taiwan Strait[J]. Estuarine Coastal Shelf Science, 2015, 166: 170−177. doi: 10.1016/j.ecss.2015.05.020
    [45] Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Seawater[M]. New York, USA: Pergamon Press, 1984.
    [46] Pai Sucheng, Yang C C, Riley J P. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters[J]. Analytiac Chimica Acta, 1990, 232: 345−349. doi: 10.1016/S0003-2670(00)81252-0
    [47] Pai Sucheng, Yang C C, Riley J P. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex[J]. Analytica Chimica Acta, 1990, 229: 115−120. doi: 10.1016/S0003-2670(00)85116-8
    [48] Habeebrehman H, Prabhakaran M P, Jacob J, et al. Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea[J]. Journal of Marine Systems, 2008, 74(1/2): 545−560.
    [49] 林丽贞. 台湾海峡南部上升流区浮游植物的磷胁迫与限制[D]. 厦门: 厦门大学, 2007.

    Lin Lizhen. Phosphorus stress of phytoplankton in upwelling area in southern Taiwan Strait[D]. Xiamen: Xiamen University, 2007.
    [50] Sieracki M E, Gilg I C, Thier E C, et al. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic[J]. Limnology and Oceanography, 2006, 51(1): 38−46. doi: 10.4319/lo.2006.51.1.0038
    [51] Lamy D, Jeanthon C, Cottrell M T, et al. Ecology of aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea[J]. Biogeosciences, 2011, 8(4): 973−985. doi: 10.5194/bg-8-973-2011
    [52] Shioi Y, Doi M, Arata H, et al. A denitrifying activity in an aerobic photosynthetic bacterium, Erythrobacter sp. Strain OCh 114[J]. Plant and Cell Physiology, 1988, 29(5): 861−865.
    [53] Ferrera I, Sánchez O, Kolářová E, et al. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria[J]. The ISME Journal, 2017, 11(10): 2391−2393. doi: 10.1038/ismej.2017.79
    [54] Fauteux L, Cottrell M T, Kirchman D L, et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes[J]. Plos One, 2015, 10(4): e0124035. doi: 10.1371/journal.pone.0124035
    [55] Mašín M, Čuperová Z, Hojerová E, et al. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe[J]. Aquatic Microbial Ecology, 2012, 66(1): 77−86. doi: 10.3354/ame01558
    [56] 刘材材, 项凌云, 张昊飞, 等. 长江口异养细菌生态分布特征及其与环境因子的关系[J]. 海洋环境科学, 2009, 28(S1): 1−4.

    Liu Caicai, Xiang Lingyun, Zhang Haofei, et al. Distribution and relationship between heterotrophic bacteria and environmental factors in Changjiang Estuary[J]. Marine Environmental Science, 2009, 28(S1): 1−4.
  • 加载中
图(7)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  74
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-02-18
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回