留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伶仃洋钻孔岩芯的磁学记录及其对海水进退的响应

吴翼 付淑清 夏真

吴翼,付淑清,夏真. 伶仃洋钻孔岩芯的磁学记录及其对海水进退的响应[J]. 海洋学报,2021,43(5):88–99 doi: 10.12284/hyxb2021059
引用本文: 吴翼,付淑清,夏真. 伶仃洋钻孔岩芯的磁学记录及其对海水进退的响应[J]. 海洋学报,2021,43(5):88–99 doi: 10.12284/hyxb2021059
Wu Yi,Fu Shuqing,Xia Zhen. Magnetic variations of sediments from a drilling core in the Lingdingyang Bay, Zhujiang River Estuary, and their responses to marine transgression and regression[J]. Haiyang Xuebao,2021, 43(5):88–99 doi: 10.12284/hyxb2021059
Citation: Wu Yi,Fu Shuqing,Xia Zhen. Magnetic variations of sediments from a drilling core in the Lingdingyang Bay, Zhujiang River Estuary, and their responses to marine transgression and regression[J]. Haiyang Xuebao,2021, 43(5):88–99 doi: 10.12284/hyxb2021059

伶仃洋钻孔岩芯的磁学记录及其对海水进退的响应

doi: 10.12284/hyxb2021059
基金项目: 广东省自然科学基金(2016A0303160,2017A030311020,2019A1515011488);广东省科学院项目(2020GDASYL-20200401001);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0204,GML2019ZD0301)
详细信息
    作者简介:

    吴翼(1981-),男,湖北省石首市人,博士,主要从事沉积古气候、磁性地层学和环境磁学方面研究。E-mail:wuy@scsio.ac.cn

    通讯作者:

    付淑清(1977-),女,副研究员,主要从事第四纪环境研究。E-mail:fsq519@163.com

  • 中图分类号: P736.2

Magnetic variations of sediments from a drilling core in the Lingdingyang Bay, Zhujiang River Estuary, and their responses to marine transgression and regression

  • 摘要: 华南珠江三角洲河口地区受到珠江流域和近海海洋环境的共同影响,其沉积体系中承载的古地质记录对于揭示海陆交互作用下的地质地貌过程演化具有独特意义。本研究对珠江伶仃洋湾口的一条钻孔岩芯进行了环境磁学研究。研究发现,在晚更新世以来海水入侵的相对高海平面时期,岩芯沉积物中磁性矿物的组成或高矫顽力组分的来源更稳定,反映了沉积区环境的稳定性或沉积物源区的相对固定;在海水退出的风化剥蚀期,沉积序列中磁性矿物组合出现大幅度旋回变化,这表明同时期碎屑物质源区可能经历了显著的环境更替。多重磁学参数包括低频磁化率、非磁滞剩磁、饱和等温剩磁以及HIRM参数,在全岩芯中指示了比较一致的磁性变化特征;相较之下,S-ratio参数的变化更灵敏地响应了伶仃洋湾口地区海水入侵和退出背景下的沉积演化历史。
  • 图  1  NZ2钻孔位置及地层信息

    背景底图由GeoMapApp (3.6.6版)提供,NZ2站位和地层信息等根据文献[23]改绘,邻近站位L2和L16位置信息来自文献[24]

    Fig.  1  Location of Core NZ2 and its stratigraphic information

    Base-map was downloaded from GeoMapApp (Version 3.6.6). Stratigraphic and chronological framework information of the study Core NZ2 were modified from reference [23], and location information of two additional cores L2 and L16 from reference [24]

    图  2  代表样品的磁化率−温度变化曲线

    箭头方向指示温度变化方向,即加热或冷却曲线

    Fig.  2  Temperature dependence of magnetic susceptibility curves from representative samples

    Arrows indicate heating or cooling directions

    图  3  归一化的等温剩磁获得曲线(a)与剩磁矫顽力曲线(b)

    a中虚线对应300 mT磁场时的等温剩磁获得情况(参见表1

    Fig.  3  Normalized results for saturation isothermal remanent magnetization acquisition (a) and back-field demagnetization (b) curves for representative samples

    The gray dash line in a indicates the magnetic field is 300 mT (see details in Table 1)

    图  4  钻孔NZ2沉积序列的磁性变化特征

    灰色曲线展示了对数坐标下各参数的变化,用于与线性坐标下的结果进行对照。灰色水平线用于标记磁性变化剧烈的界限,符号“X”标记了岩芯中的6处未采样的层位

    Fig.  4  Down-core magnetic variations for Core NZ2

    Down-core variations for each parameter are also shown on a log scale for comparison with their counterpart curves on the linear scale. Gray horizontal lines mark the positions of dramatic shifts on the curves. The symbol "X" represents an interval with no samples collected for analysis

    图  5  钻孔NZ2沉积序列的磁性矿物含量变化特征

    L-ratio用于评价参数HIRM和S-ratio作为反铁磁性矿物含量指标的有效性,根据文献[28]计算得到。灰色虚线将全岩芯记录分为4个区段,符号“X”标记了岩芯中的6处未采样的层位

    Fig.  5  Down-core variations of magnetic mineral contents for Core NZ2

    L-ratio, calculated according to reference [28], is used to evaluate the validity of HIRM and S-ratio as content indices of antiferromagnetic minerals. Gray dashed lines divide the entire section into four phases. The symbol "X" represents an interval with no samples collected for analysis

    图  6  岩芯NZ2样品的L-ratio与HIRM相互关系模式

    Fig.  6  Plots of L-ratio versus HIRM for samples from Core NZ2

    表  1  样品等温剩磁获得特征的信息

    Tab.  1  Isothermal remanent magnetization acquisition data for representative samples

    取样位置/m300 mT时的IRM/SIRM剩磁矫顽力/mT
    0~0.2094.34%47.2
    0.75~0.9589.52%42.2
    8.30~8.5085.34%45.3
    11.30~11.5084.15%61.9
    13.90~14.2091.61%21.8
    18.70~18.9095.50%24.3
    24.70~24.9093.41%39.5
    下载: 导出CSV

    表  2  伶仃洋岩芯地层划分及与珠江三角洲晚第四纪地层划分方案对比

    Tab.  2  Stratigraphy divisions on core sediments from Lingdingyang Bay and their comparison with the stratigraphy framework of the Zhujiang River Delta

    伶仃洋NZ2孔
    (本研究)
    伶仃洋L2和L16
    文献[15]
    珠江三角洲多钻孔资料*
    文献[1718]
    地层单元(深度/m)沉积相沉积相年代/ka BP地层单元(编号)沉积相年代/ka BP
    Ⅳ(0~8.3)粉砂质黏土和黏土质砂,含贝壳、有孔虫化石及碎屑(海相层)海相层(桂州海侵,或全新世海进沉积层)约9.56~0M1b三角洲相(海相层)8~0 (MIS 1)
    M1a河流−河口通道相10.5~8 (MIS 1)
    Ⅲ (8.3~16.5)粉砂质黏土以及粗砂−细砂−粗砂分层(埋藏风化壳,陆相层)陆相层(新会风化期,或风化与冲洪积层)约20~9.56T1陆相层120~10.5 (MIS 5a−d, 4−2)
    Ⅱ (16.5~25.3)黏土质粉砂(海相层)海相层(礼乐海侵)约36~20M2浅海相层126~120 (MIS 5e)
    Ⅰ(25.3~27.9)粗砂(风化层,陆相层)陆相层(风化壳,或珠江冲积层)超过40~36T2陆相层超过126 (MIS 6)
    基底基岩基岩基岩
      注:*列MIS指根据氧同位素记录划分的气候阶段,奇数和偶数期分别对应间冰期和冰期气候阶段。—表示无数据。
    下载: 导出CSV
  • [1] Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones[J]. Science, 2010, 328(5985): 1517−1520. doi: 10.1126/science.1185782
    [2] Hauer M E, Fussell E, Mueller V, et al. Sea-level rise and human migration[J]. Nature Reviews Earth & Environment, 2020, 1(1): 28−39.
    [3] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Springer, 1986.
    [4] Evans M E, Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics[M]. San Diego: Academic Press, 2003.
    [5] Liu Qingsong, Roberts A P, Larrasoana J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.
    [6] Berner R A. Early Diagenes: A Theoretical Approach[M]. Princeton, N.J: Princeton University Press, 1980.
    [7] Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151: 1−47. doi: 10.1016/j.earscirev.2015.09.010
    [8] 赵焕庭. 珠江三角洲的形成和发展[J]. 海洋学报, 1982, 4(5): 595−607.

    Zhao Huanting. Formation and development of the Zhujiang Delta[J]. Haiyang Xuebao, 1982, 4(5): 595−607.
    [9] 赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990.

    Zhao Huanting. Evolution of the Pearl River Estuary[M]. Beijing: China Ocean Press, 1990.
    [10] 赵焕庭. 珠江河口特征认知的发展[J]. 海洋学报, 2018, 40(7): 1−21.

    Zhao Huanting. Cognitive development of characteristics of the Zhujiang River Estuary[J]. Haiyang Xuebao, 2018, 40(7): 1−21.
    [11] 黄镇国, 李平日, 张仲英, 等. 珠江三角洲形成发育演变[M]. 广州: 科学普及出版社广州分社, 1982.

    Huang Zhenguo, Li Pingri, Zhang Zhongying, et al. Formation, Development and Evolution of the Zhujiang Delta[M]. Guangzhou: Science and Technology Press of Guangzhou, 1982.
    [12] 黄镇国, 李平日, 张仲英, 等. 珠江三角洲第四纪沉积特征[J]. 地质论评, 1985, 31(2): 159−164. doi: 10.3321/j.issn:0371-5736.1985.02.008

    Huang Zhenguo, Li Pingri, Zhang Zhongying, et al. Characteristics of the Quaternary deposits in the Zhujiang (Pearl) Delta[J]. Geological Review, 1985, 31(2): 159−164. doi: 10.3321/j.issn:0371-5736.1985.02.008
    [13] 徐明广, 马道修, 周青伟, 等. 珠江三角洲地区第四纪海平面变化[J]. 海洋地质与第四纪地质, 1986, 6(3): 93−102.

    Xu Mingguang, Ma Daoxiu, Zhou Qingwei, et al. Quaternary sea-level fluctuation in Zhujiang River Delta area[J]. Marine Geology & Quaternary Geology, 1986, 6(3): 93−102.
    [14] 龙云作, 霍春兰. 珠江三角洲晚第四纪沉积特征[J]. 海洋科学, 1990(4): 7−14.

    Long Yunzuo, Huo Chunlan. The sedimentation characteristics of Zhujiang River Delta in late Quaternary[J]. Marine Sciences, 1990(4): 7−14.
    [15] 陈木宏, 赵焕庭, 温孝胜, 等. 伶仃洋L2和L16孔第四纪有孔虫群与孢粉化石带特征及其地质意义[J]. 海洋地质与第四纪地质, 1994, 14(1): 11−22.

    Chen Muhong, Zhao Huanting, Wen Xiaosheng, et al. Quaternary foraminiferal group and sporopollen zones in cores L2 and L16 in the Lingdingyang Estuary[J]. Marine Geology & Quaternary Geology, 1994, 14(1): 11−22.
    [16] 杨小强, Grapes R, 周厚云, 等. 珠江三角洲沉积物的岩石磁学性质及其环境意义[J]. 中国科学D辑: 地球科学, 2008, 51(1): 56−66. doi: 10.1007/s11430-007-0151-4

    Yang Xiaoqiang, Grapes R, Zhou Houyun, et al. Magnetic properties of sediments from the Pearl River Delta, South China: paleoenvironmental implications[J]. Science in China Series D: Earth Sciences, 2008, 51(1): 56−66. doi: 10.1007/s11430-007-0151-4
    [17] Zong Yongqiang, Yim W W S, Yu Fengling, et al. Late Quaternary environmental changes in the Pearl River mouth region, China[J]. Quaternary International, 2009, 206(1/2): 35−45.
    [18] 宗永强, 黄光庆, 熊海仙, 等. 珠江三角洲晚第四纪地层、海平面变化与构造运动的关系[J]. 热带地理, 2016, 36(3): 326−333.

    Zong Yongqiang, Huang Guangqing, Xiong Haixian, et al. Relationship between late Quaternary lithostratigraphy, sea-level change and tectonics in the Pearl River Delta[J]. Tropical Geography, 2016, 36(3): 326−333.
    [19] 韦惺, 吴超羽. 全新世以来珠江三角洲的地层层序和演变过程[J]. 中国科学: 地球科学, 2011, 54(10): 1523−1149. doi: 10.1007/s11430-011-4238-6

    Wei Xing, Wu Chaoyu. Holocene delta evolution and sequence stratigraphy of the Pearl River Delta in South China[J]. Science China Earth Sciences, 2011, 54(10): 1523−1149. doi: 10.1007/s11430-011-4238-6
    [20] Xia X M, Li Y, Yang H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1809−1826. doi: 10.1016/j.csr.2004.06.009
    [21] 李家彪. 中国区域海洋学——海洋地质学[M]. 北京: 海洋出版社, 2012.

    Li Jiabiao. Regional Oceanography of China Seas——Marine Geology[M]. Beijing: China Ocean Press, 2012.
    [22] 陈耀泰. 珠江口沉积分区[J]. 中山大学学报(自然科学版), 1995, 34(3): 109−114. doi: 10.3321/j.issn:0529-6579.1995.03.002

    Chen Yaotai. Sedimentation divisions of Pearl River mouth[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1995, 34(3): 109−114. doi: 10.3321/j.issn:0529-6579.1995.03.002
    [23] 夏真, 马胜中, 梁开, 等. 珠江口伶仃洋海底沉积[J]. 海洋地质与第四纪地质, 2008, 28(2): 7−13.

    Xia Zhen, Ma Shengzhong, Liang Kai, et al. The characteristics analysis of sea bottom deposit in Lingdingyang Bay of the Pearl River estuary[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 7−13.
    [24] 温孝胜, 赵焕庭, 张乔民, 等. 伶仃洋钻孔岩心的沉积特征及环境演化[J]. 海洋学报, 1997, 19(2): 121−128.

    Wen Xiaosheng, Zhao Huanting, Zhang Qiaomin, et al. Sedimentary characteristics and environmental evolution of a drilling hole in the Lingdingyang Estuary[J]. Haiyang Xuebao, 1997, 19(2): 121−128.
    [25] Xia Zhen, Jia Peihong, Ma Shengzhong, et al. Sedimentation in the Lingdingyang Bay, Pearl River Estuary, southern China[J]. Journal of Coastal Research, 2013, 66: 12−24. doi: 10.2112/SI_66_2
    [26] Dunlop D J, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers[M]. New York: Cambridge University Press, 2001.
    [27] Deng Chenglong, Zhu Rixiang, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: a pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 873−878.
    [28] Liu Qingsong, Roberts A P, Torrent J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09011.
    [29] Karlin R, Levi S. Diagenesis of magnetic minerals in recent haemipelagic sediments[J]. Nature, 1983, 303(5915): 327−330. doi: 10.1038/303327a0
    [30] Karlin R. Magnetite diagenesis in marine sediments from the Oregon continental margin[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B4): 4405−4419. doi: 10.1029/JB095iB04p04405
    [31] Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep‐sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361−4375. doi: 10.1029/91JB03068
    [32] Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30 000 years[J]. Earth, Planets and Space, 2003, 55(6): 327−340. doi: 10.1186/BF03351766
    [33] Liu Jian, Zhu Rixiang, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): B03103.
    [34] Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223−235.
    [35] Mohamed K J, Rey D, Rubio B, et al. Onshore–offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, northwest Iberian Peninsula[J]. Continental Shelf Research, 2011, 31(5): 433−447. doi: 10.1016/j.csr.2010.06.006
    [36] Kissel C, Laj C, Jian Z, et al. Past environmental and circulation changes in the South China Sea: Input from the magnetic properties of deep-sea sediments[J]. Quaternary Science Reviews, 2020, 236: 106263. doi: 10.1016/j.quascirev.2020.106263
    [37] Zhang Weiguo, Ma Honglei, Ye Leping, et al. Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposits in northern Jiangsu Plain, China[J]. Marine Geology, 2012, 319−322: 47−56. doi: 10.1016/j.margeo.2012.07.002
    [38] Liu Qingsong, Sun Youbin, Qiang Xiaoke, et al. Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism[J]. Earth, Planets and Space, 2015, 67(1): 61. doi: 10.1186/s40623-015-0237-8
    [39] Zan Jinbo, Fang Xiaomin, Appel E, et al. New insights into the magnetic variations of aeolian sands in the Tarim Basin and its paleoclimatic implications[J]. Physics of the Earth and Planetary Interiors, 2014, 229: 82−87. doi: 10.1016/j.pepi.2014.01.010
    [40] 彭杰, 杨小强, 黄文娅, 等. 珠江三角洲全新世海平面升降及其对全球变化的响应[J]. 中山大学学报(自然科学版), 2014, 53(6): 63−72.

    Peng Jie, Yang Xiaoqiang, Huang Wenya, et al. Sea-level fluctuations and response to global changes during the Holocene in the Pearl River Delta, South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(6): 63−72.
    [41] Kissel C, Liu Zhifei, Li Jinhua, et al. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5): 1678−1693. doi: 10.1002/2016GC006283
    [42] Ouyang Tingping, Li Mingkun, Appel E, et al. Magnetic properties of surface sediments from the Pearl River Estuary and its adjacent waters: Implication for provenance[J]. Marine Geology, 2017, 390: 80−88. doi: 10.1016/j.margeo.2017.06.002
    [43] Yim W W S, Li Jiaying. Diatom preservation in an inner continental shelf borehole from the South China Sea[J]. Journal of Asian Earth Sciences, 2000, 18(4): 471−488. doi: 10.1016/S1367-9120(99)00079-6
    [44] Long Xiaoyong, Ji Junfeng, Balsam W. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F3): F03015.
    [45] Ouyang Tingping, Tang Zhihua, Zhao Xiang, et al. Magnetic mineralogy of a weathered tropical basalt, Hainan Island, South China[J]. Physics of the Earth and Planetary Interiors, 2015, 240: 105−113. doi: 10.1016/j.pepi.2015.01.001
    [46] Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169): 228−231. doi: 10.1126/science.265.5169.228
    [47] Woodroffe C D, Murray-Wallace C V. Sea-level rise and coastal change: the past as a guide to the future[J]. Quaternary Science Reviews, 2012, 54: 4−11. doi: 10.1016/j.quascirev.2012.05.009
    [48] Zhong Lifeng, Yan Wen, Li Jie, et al. Pt and Pd in sediments from the Pearl River Estuary, South China: background levels, distribution, and source[J]. Environmental Science and Pollution Research, 2012, 19(4): 1305−1314. doi: 10.1007/s11356-011-0653-7
    [49] 贾国东, 彭平安, 傅家谟. 珠江口近百年来富营养化加剧的沉积记录[J]. 第四纪研究, 2002, 22(2): 158−165. doi: 10.3321/j.issn:1001-7410.2002.02.009

    Jia Guodong, Peng Ping’an, Fu Jiamo. Sedimentary records of accelerated eutrophication for the last 100 years at the Pearl River estuary[J]. Quaternary Sciences, 2002, 22(2): 158−165. doi: 10.3321/j.issn:1001-7410.2002.02.009
    [50] 陶慧, 王建华, 陈慧娴, 等. 伶仃洋ZK19孔全新统有机物δ13C和C/N值特征及东亚季风演变记录[J]. 中山大学学报(自然科学版), 2019, 58(3): 1−12.

    Tao Hui, Wang Jianhua, Chen Huixian, et al. Characteristics of δ13C and C/N in the Holocene organic material of borehole ZK19 in Lingdingyang bay and the records of east Asian Monsoon variation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(3): 1−12.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  77
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 修回日期:  2020-08-06
  • 网络出版日期:  2021-02-26
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回