留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南大西洋热液沉积物的不同相态提取方法与元素赋存状态

张颖 杨宝菊 李传顺 王小静 汪虹敏 刘季花

张颖,杨宝菊,李传顺,等. 南大西洋热液沉积物的不同相态提取方法与元素赋存状态[J]. 海洋学报,2021,43(3):90–104 doi: 10.12284/hyxb2021057
引用本文: 张颖,杨宝菊,李传顺,等. 南大西洋热液沉积物的不同相态提取方法与元素赋存状态[J]. 海洋学报,2021,43(3):90–104 doi: 10.12284/hyxb2021057
Zhang Ying,Yang Baoju,Li Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(3):90–104 doi: 10.12284/hyxb2021057
Citation: Zhang Ying,Yang Baoju,Li Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(3):90–104 doi: 10.12284/hyxb2021057

南大西洋热液沉积物的不同相态提取方法与元素赋存状态

doi: 10.12284/hyxb2021057
基金项目: 国家自然科学基金项目(40976038);国际海域资源调查与开发“十三五”规划项目(DY135-S2-2-03,DY135-S2-2-01);青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室开放基金资助项目(MGQNLM-KF201815);国家重点基础研究发展计划(2013CB429704)
详细信息
    作者简介:

    张颖(1986-),女,山西省晋中市人,主要从事海洋沉积物元素与同位素分析研究。E-mail:zhangyinghj@163.com

    通讯作者:

    刘季花(1965-),女,研究员,主要从事海洋沉积地球化学方面研究。E-mail:jihliu@fio.org.cn

  • 中图分类号: P736.4

Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge

  • 摘要: 本文对采自南大西洋受不同程度热液活动影响的表层沉积物样品进行了元素和矿物组成分析,并对热液沉积物的碳酸盐相、Fe-Mn氧化物相和残渣态进行了一系列顺序提取实验。选用不同浓度的盐酸羟胺(HH)和醋酸(HAc)混合溶液对样品的Fe-Mn氧化物相进行提取,通过分析不同实验条件下Fe-Mn氧化物相Ti/Nd、Ti/Pb比值和Fe-Mn氧化物相、残渣态的稀土元素(REE)标准化配分模式及Ce和Eu异常值,确定了不同类型热液沉积物样品Fe-Mn氧化物相提取的理想试剂条件均为0.5 mol/L HH和25% HAc混合溶液。研究结果表明,受热液活动影响程度越高,沉积物中Fe、Cu、Zn等元素含量越高,Ca、Sr、Ba含量呈相反趋势,Mn、Pb和REE未受到热液活动明显影响;随着受热液活动影响增强,Ca、Sr、Nd在Fe-Mn氧化物相中所占比例增加,在残渣态中降低,Mn、Co、Ni和Zn呈相反趋势,Cu在碳酸盐相所占比例增加,在残渣态中降低,Pb赋存状态不受热液活动影响,主要赋存于Fe-Mn氧化物相;REE主要赋存于残渣态,沉积物受热液活动影响越明显,残留相对REE富集能力越强,残渣态REE球粒陨石标准化配分模式表现为LREE相对富集越来越不明显的特征。本文研究为进一步了解南大西洋热液沉积物特征和热液活动对沉积物元素赋存状态影响提供了方法和地球化学数据支持。
  • 图  1  南大西洋不同类型热液沉积物样品X射线衍射图

    Fig.  1  The XRD patterns of different sediment samples from the South Atlantic

    图  2  不同站位样品元素含量变化

    Fig.  2  Changes of element contents of three samples from different areas

    图  3  热液沉积物样品26III-04碳酸盐相中各元素含量随醋酸浓度变化

    Fig.  3  Changes of element contents in carbonate phase with the concentration of acetic acid of sample 26III-04

    图  4  样品全岩、碳酸盐相、Fe-Mn氧化物相和残渣态的稀土元素球粒陨石标准化模式图(球粒陨石标准化值据文献[32])

    Fig.  4  Chondrite-normalized REE distribution patterns in bulk sediments of different phases in hydrothermal sediments from South Atlantic (normalization values according to the reference [32])

    图  5  样品中元素赋存状态

    Fig.  5  Element occurrence states of different hydrothermal sediments

    表  1  样品全岩及非碳酸盐组分化学分析结果

    Tab.  1  The chemical composition of three sediment samples and the carbonate-free fraction

    样品号Al2O3CaOFe2O3K2ONa2OMgOMnOTiAl/TiBaSrCoNiCuZnCrVMo
    全样33II-121.0048.331.940.311.780.750.1844642.31621620151969226.35381.62
    26V-043.4941.314.170.302.311.910.17209231.53001734232741611237831.16
    26III-0413.330.8425.800.211.3215.430.21507149.79.6752110841001297616343316.12
    非碳酸盐33II-1211.992.3523.361.561.003.701.92482617651431501407912338461215.72
    26V-0413.237.6617.390.481.845.590.69851411751818610018053141664724.42
    26III-0410.330.5025.160.210.3113.160.2153401.981010083525994418958113.10
    样品号PbThULaCePrNdSmEuGdTbDyHoErTmYbLuY
    全样33II-1211.851.150.3211.8514.102.7511.062.430.602.420.412.630.501.380.211.190.1815.90
    26V-0423.930.900.3610.5513.632.6111.192.620.772.690.483.030.591.740.261.540.2418.13
    26III-0412.570.554.795.3310.681.929.222.900.793.320.674.670.912.810.412.490.4225.01
    非碳酸盐33II-1214510.961.3136.311698.6834.236.991.997.151.237.871.534.410.694.260.6644.15
    26V-041072.670.6214.6448.244.1418.034.571.594.960.966.321.273.630.583.540.5632.45
    26III-0412.910.534.424.569.821.668.162.590.672.840.644.450.912.600.412.550.4223.93
      注:氧化物单位为%,其他元素单位为μg/g。
    下载: 导出CSV

    表  2  不同实验条件下元素回收率(%)

    Tab.  2  The recovery rate of elements under different experimental conditions (%)

    样品号C(HH)/(mol·L−1AlCaFeMgMnTiSrCoNiCuZnCrPbNd
    26V-04294.7112.192.094.790.195.793.783.3122.996.790.0122.6100.887.1
    193.1111.988.493.391.489.993.686.1122.296.587.2123.097.786.2
    0.589.4111.488.490.588.588.393.582.1119.396.189.4112.398.385.5
    0.2595.3112.093.298.092.697.193.687.7129.3100.091.8124.690.688.8
    0.191.3111.497.688.691.194.493.884.1121.0111.997.9116.1121.191.2
    26III-042102.1107.098.4100.595.897.398.294.697.992.997.9116.792.591.5
    188.598.398.292.095.497.693.992.6100.092.297.9121.191.792.9
    0.595.297.498.095.495.797.393.791.597.493.598.4116.791.994.4
    0.25101.893.097.5102.294.597.591.792.799.592.898.6123.690.094.3
    0.1104.092.3101.5101.396.7100.593.092.9104.995.4102.4119.6100.094.0
    下载: 导出CSV

    表  3  不同实验条件下提取出的沉积物各相态百分比(%)

    Tab.  3  Proportion of main phases from experimental investigations (%)

    C(HH)/(mol·L−1)样品33II-12样品26V-04样品26III-04
    碳酸盐相Fe-Mn氧化物相残渣态碳酸盐相Fe-Mn氧化物相残渣态碳酸盐相Fe-Mn氧化物相残渣态
    292.571.336.1076.713.0520.245.1410.8684.00
    192.541.076.3878.102.7919.115.549.3285.14
    0.592.580.906.5278.232.5619.205.467.9286.62
    0.2592.950.696.3777.371.9920.645.386.5988.02
    0.177.112.0920.805.235.1089.67
      注:−表示无数据。
    下载: 导出CSV

    表  4  不同实验条件下代表性元素在各相态中百分比(%)

    Tab.  4  Percentage of representative elements in different chemical phase from leaching tests (%)

    样品号相态C(HH)/(mol·L−1)Al2O3CaOFe2O3MgOMnOTiSrCoNiCuZnCrPbNd
    33II-12碳酸盐相4.6799.612.5356.0613.350.2899.070.0056.9930.4126.194.742.0273.61
    Fe-Mn氧化物相24.210.1230.664.9182.652.180.3090.9623.6326.0124.8711.0990.6915.68
    13.980.1327.644.5983.681.410.3590.0726.0224.3525.678.4284.2116.47
    0.53.130.1222.973.8983.740.960.3289.2523.9619.9822.027.5568.2513.62
    0.252.680.1119.843.3282.710.470.3088.0122.9017.9219.896.3847.7811.57
    残渣态290.910.2166.6936.332.6597.530.569.0414.1341.6947.6982.957.248.72
    191.360.2769.8339.342.9798.310.589.9316.9945.2448.1486.8413.779.92
    0.592.150.2474.5638.743.4198.760.5810.7517.3750.4352.4387.2029.8211.93
    0.2592.430.2677.6039.374.5899.240.5611.9918.1650.7653.7788.3150.2413.69
    26V-04碳酸盐相4.4995.802.0427.458.890.0997.380.0030.3628.8039.506.081.5160.67
    Fe-Mn氧化物相25.750.2139.156.7273.262.700.8363.6821.8340.3328.939.8790.8619.08
    15.320.2136.785.4474.101.490.8664.3720.3239.4728.257.7084.6118.83
    0.54.580.1832.693.6773.950.790.8165.5718.0134.2925.906.3365.3216.35
    0.254.070.1629.853.1472.320.360.7861.6416.4828.7924.045.1251.3914.83
    0.13.960.1826.403.6573.180.210.8264.0316.0220.7521.715.0323.4813.02
    残渣态289.763.9958.8165.8317.8597.201.7936.3247.8030.8731.5884.057.6420.25
    190.113.8161.1066.7017.1398.411.6735.6349.1331.6630.9886.2313.8319.87
    0.590.673.4565.1867.6017.0099.111.6834.4350.7136.7134.3187.0233.1321.83
    0.2591.473.9868.1370.3319.0399.551.7838.3654.6743.3337.2488.8946.9425.63
    0.191.393.4071.6867.0018.0299.701.8935.9753.1554.3641.9588.5575.2629.04
    26III-04碳酸盐相0.2534.761.871.302.490.0058.503.560.5556.664.390.190.9910.29
    Fe-Mn氧化物相23.1322.6026.963.0725.970.5123.9830.415.0930.5721.605.2186.9050.91
    12.5716.2221.732.6624.510.2219.9429.724.1527.7715.233.5980.8647.42
    0.51.8112.9217.232.0123.710.1018.0225.613.1225.4711.282.8268.9741.70
    0.251.2511.3214.361.5322.850.0416.4624.802.4322.728.512.0256.0035.10
    0.10.9110.2213.571.4622.920.0216.2124.732.4322.477.332.0442.2731.73
    残渣态296.6242.6471.1795.6371.5399.4917.5266.0394.3612.7774.0194.6012.1138.80
    197.1445.9576.3995.9372.9999.7718.9066.6495.3215.1180.3896.2218.1442.44
    0.597.9248.9080.8996.6273.8099.9020.6970.7196.3318.2284.3596.9930.0448.32
    0.2598.4948.6883.7697.2074.6299.9620.9071.5797.0320.5487.1397.8042.9854.91
    0.198.8449.4784.6197.2574.6199.9822.0171.6497.0522.3488.4897.7856.8158.24
    下载: 导出CSV

    表  5  不同实验条件下各相态中元素含量和元素比

    Tab.  5  Element concentrations and element ratios in different chemical phase from leaching tests

    样品号相态C(HH)/(mol·L−1)Al2O3CaOFe2O3MgOMnOTiSrCoNiCuZnCrPbNdAl/TiTi/PbTi/Nd
    33II-12碳酸盐相0.0558.150.050.400.021.1314500.00172260.390.237.522284.950.15
    Fe-Mn氧化物相23.886.2750.783.0910.997874048355891 58952167921143260.855.48
    13.586.3344.972.8411.485004409076641 52554961822145380.613.45
    0.53.326.9545.732.8114.2539647610767091 53757758833142440.482.79
    0.253.598.4449.693.1318.5724458913938801 69865964740157780.331.56
    残渣态213.791.8818.203.780.06579612513.675843317183121312.59478440
    113.822.2819.104.090.07585112416.8273476173105231512.50259398
    0.513.491.9920.453.860.08563212117.847153418993501712.68112329
    0.2513.402.2121.024.020.11562512020.527552019396842012.6167281
    26V-04碳酸盐相0.1957.340.100.640.022.4220450.0013150513.540.477.654195.150.32
    Fe-Mn氧化物相26.233.2649.253.993.7417754443932405 32895614672061192.4729.07
    16.193.4048.593.474.1910075004492435 68798912571065331.4215.45
    0.55.563.1447.002.474.415675134742295 350101010260061520.949.29
    0.256.803.7258.342.965.823696406142936 029124411856174980.664.97
    0.16.023.8751.312.955.501976415802534 6181136102325641620.613.10
    残渣态214.659.1211.145.880.14961314433.717961415718799.758.071056985
    115.309.2311.786.220.14969214236.22866661582031710.048.36572966
    0.514.718.2812.516.080.14953514233.22867651791874110.888.17235877
    0.2514.728.9112.816.370.15979614036.77938731851974912.347.95199794
    0.113.997.5314.025.450.14946314832.81841 21722118110514.267.8390664
    26III-04碳酸盐相0.665.979.093.840.102.4556870.798.6710 08478026.912.2016.6114171.120.15
    Fe-Mn氧化物相23.921.8762.984.380.4923111229138.5826 1921899919339.55902.485.84
    13.251.4359.044.040.5311810432437.4327 49015607610043.531451.182.72
    0.52.891.3355.053.740.616311032532.2930 13313686810145.832440.621.37
    0.252.571.3454.783.650.702911838330.8432 0311242629646.294770.300.62
    0.12.481.5569.644.480.921915349542.0342 06914337810453.846830.180.36
    残渣态215.650.4621.5017.650.17584310.6081.7292.531 4148412141.683.9014.1834851499
    113.460.4522.7215.990.17579710.7979.5794.221 6389022232.464.2712.2923601359
    0.514.340.4623.6116.410.17569211.5882.0791.171 9709352134.014.8513.3314211173
    0.2515.170.4323.9417.410.17561611.2782.8192.242 1699522245.535.4214.3010161036
    0.115.280.4324.7116.960.17568311.8181.5795.492 3809852137.965.6214.237141010
      注:氧化物单位为%,其他元素单位为μg/g。
    下载: 导出CSV

    表  6  不同实验条件下各相态稀土元素δCe和δEu值

    Tab.  6  δCe ratios and δEu ratios of different chemical phase from leaching tests in hydrothermal sediments on the South Atlantic

    C(HH)/(mol·L−133II-1226V-0426III-04
    Fe-Mn氧化物相残渣态Fe-Mn氧化物相残渣态Fe-Mn氧化物相残渣态
    δCeδEuδCeδEuδCeδEuδCeδEuδCeδEuδCeδEu
    22.020.681.121.261.750.731.141.130.861.050.870.50
    11.820.641.221.131.640.681.221.090.861.010.840.51
    0.52.000.661.401.031.600.711.341.260.870.980.870.58
    0.251.980.681.450.881.570.731.281.160.861.020.860.57
    0.11.550.741.411.100.881.000.810.67
      注:−表示无数据。
    下载: 导出CSV
  • [1] German C R, Bennett S A, Connelly D P, et al. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4-5°S[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 332−344.
    [2] Haase K M, Koschinsky A, Petersen S, et al. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: the Lilliput field at 9°33′S[J]. Marine Geology, 2009, 266(1/4): 52−64.
    [3] Tao Chunhui, Li Huaiming, Yang Yaomin, et al. Two hydrothermal fields found on the Southern Mid-Atlantic Ridge[J]. Science China Earth Sciences, 2011, 54(9): 1302−1303. doi: 10.1007/s11430-011-4260-8
    [4] Li Bing, Shi Xuefa, Wang Jixin, et al. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12−14°S)[J]. Journal of Marine Systems, 2018, 181: 1−13. doi: 10.1016/j.jmarsys.2018.02.003
    [5] Schmid F, Peters M, Walter M, et al. Physico-chemical properties of newly discovered hydrothermal plumes above the Southern Mid-Atlantic Ridge (13°−33°S)[J]. Deep−Sea Research Part I: Oceanographic Research Papers, 2019, 148: 34−52. doi: 10.1016/j.dsr.2019.04.010
    [6] Li Bing, Yang Yaomin, Shi Xuefa, et al. Characteristics of a ridge-transform inside corner intersection and associated mafic-hosted seafloor hydrothermal field (14.0°S, Mid-Atlantic Ridge)[J]. Marine Geophysical Research, 2014, 35(1): 55−68. doi: 10.1007/s11001-013-9209-1
    [7] 李兵, 石学法, 杨耀民, 等. 南大西洋14.0°S热液区热液硫化物矿物学特征及地质意义[J]. 矿物学报, 2015, 35(1): 35−43.

    Li Bing, Shi Xuefa, Yang Yaomin, et al. Mineralogy and geological significance of hydrothermal deposits from the 14.0°S hydrothermal field, South Mid-Atlantic Ridge[J]. Acta Mineralogica Sinica, 2015, 35(1): 35−43.
    [8] Wang Shujie, Li Huaiming, Zhai Shikui, et al. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S[J]. Journal of Ocean University of China, 2017, 16(6): 1043−1054. doi: 10.1007/s11802-017-3316-6
    [9] Wang Shujie, Li Huaiming, Zhai Shikui, et al. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2017, 36(2): 22−34. doi: 10.1007/s13131-016-0961-3
    [10] 李景喜, 朱志伟, 尹晓斐, 等. 南大西洋中脊表层沉积物中稀土元素的含量及分布模式分析[J]. 分析化学, 2015, 43(1): 21−26. doi: 10.1016/S1872-2040(15)60796-4

    Li Jingxi, Zhu Zhiwei, Yin Xiaofei, et al. Analysis of contents and distribution patterns of rare earth elements in surface sediments of the south Mid-Atlantic Ridge[J]. Chinese Journal of Analytical Chemistry, 2015, 43(1): 21−26. doi: 10.1016/S1872-2040(15)60796-4
    [11] Xin Huang, Chen Shuai, Zeng Zhigang, et al. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge[J]. Journal of Ocean University of China, 2017, 16(5): 775−780. doi: 10.1007/s11802-017-3311-y
    [12] 刘菲菲, 于增慧, 高玉花, 等. 海洋沉积物的顺序萃取方法及其在冲绳海槽热液影响沉积物中的应用[J]. 海洋地质与第四纪地质, 2008, 28(5): 137−144.

    Liu Feifei, Yu Zenghui, Gao Yuhua, et al. Sequential extraction procedure for marine sediments and application to the Middle Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 137−144.
    [13] 于增慧, 高玉花, 翟世奎, 等. 冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J]. 中国科学: 地球科学, 2012, 55(4): 665−674. doi: 10.1007/s11430-011-4273-3

    Yu Zenghui, Gao Yuhua, Zhai Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough[J]. Science China Earth Sciences, 2012, 55(4): 665−674. doi: 10.1007/s11430-011-4273-3
    [14] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis[J]. Chemical Geology, 2002, 187(3/4): 179−199.
    [15] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1): 1−38.
    [16] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments[J]. Chemical Geology, 2007, 242(3/4): 351−370.
    [17] Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of Aeolian flux in regulating oceanic dissolved REE[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 477−492.
    [18] Sun Zhilei, Cao Hong, Yin Xijie, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge[J]. Journal of Marine Systems, 2018, 187: 128−140. doi: 10.1016/j.jmarsys.2018.06.014
    [19] 李康, 曾志刚, 殷学博, 等. 东太平洋海隆13°N和赤道附近表层沉积物中的元素赋存状态[J]. 海洋地质与第四纪地质, 2009, 29(3): 53−60.

    Li Kang, Zeng Zhigang, Yin Xuebo, et al. Mode of element occurrence in surface sediments from East Pacific Rise near 13°N and the equator[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 53−60.
    [20] 荣坤波, 曾志刚, 武力, 等. 东太平洋海隆13°N表层含金属沉积物物质组成与元素赋存状态[J]. 海洋科学, 2018, 42(7): 70−79. doi: 10.11759/hykx20170925002

    Rong Kunbo, Zeng Zhigang, Wu Li, et al. Composition and element occurrence states of recent metalli-ferous sediments from the East Pacific Rise at 13°N[J]. Marine Sciences, 2018, 42(7): 70−79. doi: 10.11759/hykx20170925002
    [21] 张颖, 张辉, 王小静, 等. 海洋沉积物不同相态中Sr、Nd同位素提取方法研究[J]. 海洋学报, 2020, 42(2): 155−166.

    Zhang Ying, Zhang Hui, Wang Xiaojing, et al. Sequential extraction of Sr and Nd isotope from Fe–Mn oxyhydroxide and detrital in marine sediments[J]. Haiyang Xuebao, 2020, 42(2): 155−166.
    [22] Wang Hao, Li Xiaohu, Chu Fengyou, et al. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge[J]. Journal of Marine Systems, 2018, 180: 220−227. doi: 10.1016/j.jmarsys.2017.02.010
    [23] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325−394.
    [24] 赵一阳, 翟世奎, 李永植, 等. 冲绳海槽中部热水活动的新记录[J]. 科学通报, 1997, 42(7): 574−577. doi: 10.1007/BF03182621

    Zhao Yiyang, Zhai Shikui, Li Yongzhi, et al. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574−577. doi: 10.1007/BF03182621
    [25] 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25−37.

    Yang Baoju, Wu Yonghua, Liu Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25−37.
    [26] 翟世奎, 于增慧, 杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报, 2007, 29(1): 58−65.

    Zhai Shikui, Yu Zenghui, Du Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Haiyang Xuebao, 2007, 29(1): 58−65.
    [27] Hu Qiannan, Zhang Xin, Jiang Fuqing, et al. Geochemical characteristics of hydrothermal sediments from Iheya North Knoll in the Okinawa Trough[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 947−955. doi: 10.1007/s00343-017-6035-3
    [28] Bloemsma M R, Zabel M, Stuut J B W, et al. Modeling the joint variability of grain size and chemical composition in sediments[J]. Sedimentary Geology, 2012, 280: 135−148. doi: 10.1016/j.sedgeo.2012.04.009
    [29] Dymond J. Geochemistry of Nazca Plate surface sediments: an evalution of hydrothermal, biogenic, detrital and hydrogeneous sources[J]. Geological Society of America Memoirs, 1981, 154(12): 133−173.
    [30] Dunk R M, Mills R A. The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East Pacific Rise[J]. Marine Geology, 2006, 229(3/4): 133−157.
    [31] Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1985: 312.
    [32] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63−114. doi: 10.1016/B978-0-444-42148-7.50008-3
    [33] Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511−3524. doi: 10.1016/0016-7037(95)00224-N
    [34] Jiang Xuejun, Lin Xuehui, Yao De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China Earth Sciences, 2011, 54(2): 197−203. doi: 10.1007/s11430-010-4070-4
    [35] Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 14(4): 285−304. doi: 10.1016/0009-2541(74)90066-7
    [36] Kuhn T, Bau M, Blum N, et al. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe–Mn crusts from the Central Indian Ridge[J]. Earth and Planetary Science Letters, 1998, 163(1/4): 207−220.
    [37] Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513−528. doi: 10.1016/0016-7037(81)90184-8
    [38] Li Zhenggang, Chu Fengyou, Jin Lu, et al. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component[J]. Acta Oceanologica Sinica, 2016, 35(2): 101−108. doi: 10.1007/s13131-015-0678-8
    [39] Elderfield H, Greaves M J. Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules[J]. Earth and Planetary Science Letters, 1981, 55(1): 163−170. doi: 10.1016/0012-821X(81)90095-9
    [40] Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105−5113. doi: 10.1016/0016-7037(94)90297-6
    [41] 曾志刚, 翟世奎, 赵一阳, 等. 大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 1999, 19(3): 59−66.

    Zeng Zhigang, Zhai Shikui, Zhao Yiyang, et al. Rare earth element geochemistry of hydrothermal sediment from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 1999, 19(3): 59−66.
    [42] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869−3878. doi: 10.1016/0016-7037(96)00236-0
    [43] Kryc K A, Murray R W, Murray D W. Al-to-oxide and Ti-to-organic linkages in biogenic sediment: relationships to paleo-export production and bulk Al/Ti[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 125−141.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  97
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 修回日期:  2020-06-28
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回