留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

礁面大糙率存在下孤立波传播变形及爬高实验研究

杨笑笑 姚宇 郭辉群 贾美军

杨笑笑,姚宇,郭辉群,等. 礁面大糙率存在下孤立波传播变形及爬高实验研究[J]. 海洋学报,2021,43(3):24–30 doi: 10.12284/hyxb2021053
引用本文: 杨笑笑,姚宇,郭辉群,等. 礁面大糙率存在下孤立波传播变形及爬高实验研究[J]. 海洋学报,2021,43(3):24–30 doi: 10.12284/hyxb2021053
Yang Xiaoxiao,Yao Yu,Guo Huiqun, et al. Laboratory study of solitary wave transformation and run-up over reefs with large reef roughness[J]. Haiyang Xuebao,2021, 43(3):24–30 doi: 10.12284/hyxb2021053
Citation: Yang Xiaoxiao,Yao Yu,Guo Huiqun, et al. Laboratory study of solitary wave transformation and run-up over reefs with large reef roughness[J]. Haiyang Xuebao,2021, 43(3):24–30 doi: 10.12284/hyxb2021053

礁面大糙率存在下孤立波传播变形及爬高实验研究

doi: 10.12284/hyxb2021053
基金项目: 国家自然科学基金(51979013,51679014);湖南省教育厅项目(18A116)
详细信息
    作者简介:

    杨笑笑(1993-),女,河南省西华县人,主要从事近海水动力学研究。E-mail:962065416@qq.com

    通讯作者:

    姚宇(1982-),男,副教授,主要从事近海水动力学研究。E-mail:yaoyu821101@163.com

  • 中图分类号: TV139.2

Laboratory study of solitary wave transformation and run-up over reefs with large reef roughness

  • 摘要: 本文采用圆柱体阵列来模拟珊瑚礁面的大糙率,通过波浪水槽实验研究礁面糙率对孤立波传播变形及岸滩爬高的影响。结果表明,粗糙礁面的存在显著削弱了礁坪上孤立波的首峰和礁后岸滩反射造成的次峰,同时降低了波浪在珊瑚礁面的传播速度;垂直于岸线方向沿礁相对波高随着入射波增大而减小,随着礁坪水深的增大而增大,粗糙礁面上波高沿礁的衰减更为显著;礁前斜坡的无量纲反射波高随无量纲入射波高的变化与礁坪水深有关,当入射波高足够大时其趋于常值,粗糙礁面略微增大了礁前斜坡的反射;无量纲透射波高和岸滩爬高随着无量纲入射波高的增大而减小,特别是礁坪水深较大时更为显著,粗糙礁面时的无量纲岸滩爬高相对于光滑礁面平均减小46%;通过回归分析得出了同时适合于光滑和粗糙礁面的预测孤立波岸滩爬高的经验关系式。
  • 图  1  物理实验设置

    a. 实验布置图;b. 珊瑚礁模型;c. 粗糙礁面;d. 粗糙密度的排列方式

    Fig.  1  Experimental setup

    a. Layout of the setup; b. reef model; c. rough reef surface; d. arrangement of the roughness elements

    图  2  垂直于岸线方向沿礁不同位置(G1、G5、G7、G10、G14、G18)自由液面高度($\eta $)的时间序列

    Fig.  2  Time series of free surface elevation ($\eta $) at different cross-shore locations (G1, G5, G7, G10, G14, G18) along the reef

    图  3  无量纲波高${H_i}/{H_0}$垂直于岸线方向的沿礁(G1−G18)变化规律

    a. 礁坪水深hr=0.05 m和粗糙礁面$ {\phi = 0.126}$时不同入射波高$ {{H_0}}$的影响;b. 入射波高H0=0.08 m和粗糙礁面$ {\phi = 0.126}$时不同礁坪水深$ {{h_r}}$的影响;c. 入射波高H0=0.08 m和礁坪水深hr=0.05 m时不同糙率密度($ {\phi }$)的影响;d. 珊瑚礁物理模型剖面(礁缘处为X=0,向岸方向为正)

    Fig.  3  The cross-shore variation of normalized wave heights (${H_i}/{H_0}$) along the reef (G1−G18)

    a.Different incident wave heights ($ {{H_0}}$) under hr=0.05 m and $ {\phi = 0.126}$; b. different reef-flat submergences ($ {{h_r}}$) under H0=0.08 m and $ {\phi = 0.126}$; c. different roughness densities ($ {\phi }$) under H0=0.08 m and hr=0.05 m; d. profile of the physical reef model (X=0 indicates the location of reef edge with positive X pointing shoreward)

    图  4  外海G1处自由液面($\eta $)的时间序列(a)和无量纲反射波高${H_{\rm{R}}}/{H_0}$随无量纲入射波高${H_0}/{h_0}$的变化(b)

    b图中空心:$ {\phi {\rm{ = }}0}$,实心:$ {\phi {\rm{ = }}0.126}$;圆形:hr=0.025 m,菱形:hr=0.05 m,三角形:hr=0.075 m,正方形:hr=0.10 m

    Fig.  4  Time-series of the free surface elevation at offshore G1 (a), and variation of the normalized reflected wave height at G1 (${H_{\rm{R}}}/{H_0}$) with the normalized incident wave height (${H_0}/{h_0}$)(b)

    In figure b, white markers: $ {\phi {\rm{ = }}0}$, black markers: $ {\phi {\rm{ = }}0.126}$; circles: hr=0.025 m, diamonds: hr=0.05 m, triangles:hr=0.075 m, squares: hr=0.10 m

    图  5  礁后岸滩坡脚(G18)处无量纲透射波高(${H_{18}}/{H_0}$)随无量纲入射波高(${H_0}/{h_0}$)的变化(a),岸滩爬高($R/{H_0}$)随无量纲入射波高(${H_0}/{h_0}$)的变化(b)

    $ {\phi {\rm{ = }}0}$,实心:$ {\phi {\rm{ = }}0.126}$;圆形:hr=0.025 m,菱形:hr=0.05 m,三角形:hr=0.075 m,正方形:hr=0.10 m

    Fig.  5  Variation of the normalized transmitted wave height at the toe of back-reef beach (G18) (${H_{18}}/{H_0}$) with the normalized incident wave height (${H_0}/{h_0}$) (a), and variation of the wave run-up on the back-reef beach ($R/{H_0}$) with the normalized incident wave height (${H_0}/{h_0}$) (b)

    White markers: $ {\phi {\rm{ = }}0}$, black markers: $ {\phi {\rm{ = }}0.126}$; circles: hr=0.025 m, diamonds: hr=0.05 m, triangles:hr=0.075 m, squares: hr=0.10 m

    图  6  无量纲礁后岸滩爬高($R/{h_0}$)随无量纲入射波高(${H_0}/{h_0}$)的变化(a);无量纲礁后岸滩爬高($R/{H_0}$)随相对礁坪水深(${h_r}/{H_0}$)的变化(b);基于公式(3)的预测值与实验测量爬高对比(c)

    $ {\phi {\rm{ = }}0}$,实心:$ {\phi {\rm{ = }}0.126}$;圆形:hr=0.025 m,菱形:hr=0.05 m,三角形:hr=0.075 m,正方形:hr=0.10 m

    Fig.  6  Variation of the normalized wave run-up on the back-reef beach ($R/{h_0}$) with the normalized incident wave height (${H_0}/{h_0}$) (a); variation of the normalized wave run-up on the back-reef beach ($R/{h_0}$) with the relative reef-flat water level (${h_r}/{H_0}$) (b); comparison between the predicted wave run-ups based on Eq. (3) and the measured wave run-ups (c)

    White markers: $ {\phi {\rm{ = }}0}$, black markers: $ {\phi {\rm{ = }}0.126}$; circles: hr=0.025 m, diamonds: hr=0.05 m, triangles:hr=0.075 m, squares: hr=0.10 m

  • [1] Yao Yu, Du Ruichao, Jiang Changbo, et al. Experimental study of reduction of solitary wave run-up by emergent rigid vegetation on a beach[J]. Journal of Earthquake and Tsunami, 2015, 9(5): 1540003. doi: 10.1142/S1793431115400035
    [2] Titov V, Rabinovich A B, Mofjeld H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045−2048. doi: 10.1126/science.1114576
    [3] Mori N, Takahashi T. The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engineering Journal, 2012, 54(1): 1250001.
    [4] Danielsen F, Sørensen M K, Olwig M F, et al. The Asian tsunami: a protective role for coastal vegetation[J]. Science, 2005, 310(5748): 643. doi: 10.1126/science.1118387
    [5] Gourlay M R. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two dimensional horizontal reef[J]. Coastal Engineering, 1996, 27(3/4): 161−193.
    [6] 姚宇. 珊瑚礁海岸水动力学问题研究综述[J]. 水科学进展, 2019, 30(1): 139−152.

    Yao Yu. A review of the coral reef hydrodynamics[J]. Advances in Water Science, 2019, 30(1): 139−152.
    [7] Lin Pengzhi. A numerical study of solitary wave interaction with rectangular obstacles[J]. Coastal Engineering, 2004, 51(1): 35−51. doi: 10.1016/j.coastaleng.2003.11.005
    [8] Quiroga P D, Cheung K F. Laboratory study of solitary-wave transformation over bed-form roughness on fringing reefs[J]. Coastal Engineering, 2013, 80: 35−48. doi: 10.1016/j.coastaleng.2013.05.002
    [9] Yao Yu, He Fang, Tang Zhengjiang, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142−155. doi: 10.1016/j.oceaneng.2017.12.020
    [10] Becker J M, Merrifield M A, Ford M. Water level effects on breaking wave setup for Pacific island fringing reefs[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 914−932. doi: 10.1002/2013JC009373
    [11] Synolakis C E. The runup of solitary waves[J]. Journal of Fluid Mechanics, 1987, 185: 523−545. doi: 10.1017/S002211208700329X
    [12] Yao Yu, Huang Zhenhua, Monismith S G, et al. Characteristics of monochromatic waves breaking over fringing reefs[J]. Journal of Coastal Research, 2013, 29(1): 94−104.
    [13] Yao Yu, He Wenrun, Du Ruichao, et al. Study on wave-induced setup over fringing reefs in the presence of a reef crest[J]. Applied Ocean Research, 2017, 66: 164−177. doi: 10.1016/j.apor.2017.06.002
  • 加载中
图(6)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  101
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 修回日期:  2020-05-08
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回