留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海邻近海域风暴潮数据同化与特征分析

丁骏 吕忻 姚雅倩 孟鑫 姜雪敏 吴旭云 葛建忠

丁骏,吕忻,姚雅倩,等. 上海邻近海域风暴潮数据同化与特征分析[J]. 海洋学报,2021,43(3):135–145 doi: 10.12284/hyxb2021049
引用本文: 丁骏,吕忻,姚雅倩,等. 上海邻近海域风暴潮数据同化与特征分析[J]. 海洋学报,2021,43(3):135–145 doi: 10.12284/hyxb2021049
Ding Jun,Lü Xin,Yao Yaqian, et al. Research on data assimilation and features analysis of storm surge in the Shanghai offshore areas[J]. Haiyang Xuebao,2021, 43(3):135–145 doi: 10.12284/hyxb2021049
Citation: Ding Jun,Lü Xin,Yao Yaqian, et al. Research on data assimilation and features analysis of storm surge in the Shanghai offshore areas[J]. Haiyang Xuebao,2021, 43(3):135–145 doi: 10.12284/hyxb2021049

上海邻近海域风暴潮数据同化与特征分析

doi: 10.12284/hyxb2021049
基金项目: 上海市海洋局科研项目(沪海科2018-07)
详细信息
    作者简介:

    丁骏(1986-),男,江苏省东台市人,工程师,主要从事海洋数值预报研究。E-mail:jding@shou.edu.cn

    通讯作者:

    吕忻(1986-),女,工程师,主要从事海洋管理研究。E-mail:lvxin@ecs.mnr.gov.cn

  • 中图分类号: P731.23

Research on data assimilation and features analysis of storm surge in the Shanghai offshore areas

  • 摘要: 风暴潮是一种复杂的对众多因素敏感又备受关注的海洋现象。本文基于协方差局地化的集合卡尔曼滤波方法(EnKF),选择201810号台风“安比”登陆上海的风暴潮过程,首次将海洋站和FVCOM数值模拟的不同来源、不同误差信息、不同时空分辨率的风暴潮进行数据同化融合,获得了逐72 h的上海海域风暴潮的最优解,进行了同化结果评估验证,并给出了集合样本数和Schur半径设置范围。结果表明,实测计算和数值模拟的风暴增减水之间均方根误差为0.20 m,实测和同化计算的风暴增减水之间均方根误差为0.07 m,准确度提高了65%;独立观测和同化计算的风暴增减水均方根误差为0.09 m,集合离散度与均方根误差比值为0.90,同化效果较好且可信;同化后的风暴增减水能够较好地刻画双峰增水、台风眼增水、增水锋面等特征,对于风暴潮研究、数值模拟结果订正、海洋防灾减灾等有重要意义。
  • 图  1  数据同化区域、监测站点分布和部分台风路径

    Fig.  1  Data assimilation region, monitoring stations and parts of typhoon track

    图  2  长江口海域计算网格和水深

    Fig.  2  Computing grids and water depth in the Changjiang River Estuary

    图  3  同化实验的6个站风暴增减水时间序列

    Fig.  3  Storm surge time series of 6 stations participating in assimilation

    图  4  未参加同化的3个站风暴增减水时间序列

    Fig.  4  Storm surge time series of 3 stations not participating in assimilation

    图  5  集合离散度和均方根误差对比

    Fig.  5  The comparison of set dispersion and root mean square error

    图  6  台风登陆前数值模拟的增减水场

    Fig.  6  Storm surge field calculated by model before the typhoon landing

    图  7  台风登陆前同化实验的增减水场

    Fig.  7  Storm surge field of assimilation before the typhoon landing

    图  8  2018年7月22日12:00时长江口断面各站增水值

    Fig.  8  Storm surge of the Changjiang River Estuary section stations at 12:00 July 22, 2018

    图  9  2018年7月22日12:00时杭州湾北断面各站增水值

    Fig.  9  Storm surge of the Hangzhou Bay section stations  at 12:00 July 22, 2018

    图  10  不同集合样本数及Schur半径同化误差

    Fig.  10  The assimilation results error of different set samples and Schur radius

    表  1  同化检验实验设计

    Tab.  1  Experimental design of assimilation verification

    实验方案实验名称起始状态观测资料步长方法实验目标
    A控制实验2018年7月20日15时(世界时)FVCOM预报结果1 hFVCOM数值模拟9个站数值模拟的风暴增减水序列(72 h);典型时刻数值模拟的风暴增减水场
    2016年1月1日00时实测水位9个站实测水位1 h调和分析9个站实测水位计算的风暴增减水序列(72 h)
    B同化实验2018年7月20日15时(世界时)FVCOM预报结果6个站实测水位计算的风暴增减水序列1 hEnKF6个站同化的风暴增减水序列(72 h);3个站同化的风暴增减水序列(72 h);典型时刻同化的风暴增减水场
    下载: 导出CSV

    表  2  典型时刻9个海洋站增减水对比

    Tab.  2  Storm surge comparisons of the 9 stations as typical moment

    海洋站实测水位计算的增水/m数值模拟的增水/m同化后的增水/m实测水位计算与数值模拟实测水位计算与同化
    绝对偏差/m均方根误差/m绝对偏差/m均方根误差/m
    崇明南门0.340.060.400.280.310.060.12
    堡镇0.610.060.390.550.22
    吴淞0.390.070.340.320.05
    高桥0.460.060.330.400.13
    佘山0.38−0.050.360.430.02
    大戢山0.04−0.060.130.100.09
    芦潮港0.13−0.040.130.170.00
    滩浒岛−0.10−0.050.070.050.17
    金山嘴−0.12−0.080.040.040.16
    下载: 导出CSV
  • [1] Dube S K, Rao A D, Sinha P C, et al. Storm surges: worst coastal marine hazard[M]//Murthy C R, Sinha P C, Rao Y R. Modelling and Monitoring of Coastal Marine Processes. Dordrecht: Springer, 2008: 125−140.
    [2] Maduwantha M G P, Wijayaratna T M N. An estimation of storm surge heights of colombo coastline[C]//Moratuwa Engineering Research Conference (MERCon). Moratuwa, Sri Lanka: IEEE, 2019.
    [3] NOAA. Introduction to storm surge guide[EB/OL]. [2020−11−10]. https://www.nhc.noaa.gov/surge/surge_intro.pdf.
    [4] 王喜年, 叶琳. 我国沿海风暴潮的监测及其预报[J]. 海洋预报, 1992, 9(3): 28−37. doi: 10.11737/j.issn.1003-0239.1992.03.004

    Wang Xinian, Ye Lin. Monitoring and forecasting of storm surges along the coastal areas of China[J]. Marine Forecasts, 1992, 9(3): 28−37. doi: 10.11737/j.issn.1003-0239.1992.03.004
    [5] 刘俊. 关注风暴潮、巨浪、潮汐[M]. 北京: 军事科学出版社, 2011.

    Liu Jun. Focus on Storm Surges, Huge Waves, and Tides[M]. Beijing: Military Science Press, 2011.
    [6] Thuy N B, Tien T Q, Wettre C, et al. Monsoon-induced surge during high tides at the southeast coast of vietnam: a numerical modeling study[J]. Geosciences, 2019, 9(2): 72. doi: 10.3390/geosciences9020072
    [7] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.
    [8] Chen Nan, Han Guoqi, Yang Jingsong, et al. Hurricane Sandy storm surges observed by HY-2A satellite altimetry and tide gauges[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4542−4548. doi: 10.1002/2013JC009782
    [9] 周黔生. 对风暴潮增水及其计算方法的一点见解[J]. 海洋预报, 1992, 9(3): 56−59. doi: 10.11737/j.issn.1003-0239.1992.03.007

    Zhou Qiansheng. Point of view on storm surge water and its calculation method[J]. Marine Forecasts, 1992, 9(3): 56−59. doi: 10.11737/j.issn.1003-0239.1992.03.007
    [10] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 10143−10162. doi: 10.1029/94JC00572
    [11] Houtekamer P L, Zhang Fuqing. Review of the ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review, 2016, 144(12): 4489−4532. doi: 10.1175/MWR-D-15-0440.1
    [12] Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review, 1998, 126(3): 796−811. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
    [13] Butler T, Altaf M U, Dawson C, et al. Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting[J]. Monthly Weather Review, 2012, 140(7): 2215−2231. doi: 10.1175/MWR-D-11-00118.1
    [14] Altaf M U, Butler T, Mayo T, et al. A comparison of ensemble Kalman filters for storm surge assimilation[J]. Monthly Weather Review, 2014, 142(8): 2899−2914. doi: 10.1175/MWR-D-13-00266.1
    [15] Colle B A, Bowman M J, Roberts K J, et al. Exploring water level sensitivity for Metropolitan New York during Sandy (2012) using ensemble storm surge simulations[J]. Journal of Marine Science and Engineering, 2015, 3(2): 428−443. doi: 10.3390/jmse3020428
    [16] Etala P, Saraceno M, Echevarría P, et al. An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction[J]. Ocean Dynamics, 2015, 65(3): 435−447. doi: 10.1007/s10236-015-0808-z
    [17] 冯士筰. 风暴潮导论[M]. 北京: 科学出版社, 1982.

    Feng Shizuo. Introduction to Storm Surge[M]. Beijing: Science Press, 1982.
    [18] 赵长进. 长江口及其邻近海区无结构网格风暴潮模式的建立与应用[D]. 上海: 华东师范大学, 2014: 1−69.

    Zhao Changjin. Development and analysis of the unstructured numerical model for storm surge in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2014: 1−69.
    [19] Wahl T, Mudersbach C, Jensen J. Statistical assessment of storm surge scenarios within integrated risk analyses[J]. Coastal Engineering Journal, 2015, 57(1): 1540003.
    [20] Houtekamer P L, Mitchell H L. A sequential ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review, 2001, 129(1): 123−137. doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
    [21] 庄照荣, 薛纪善, 李兴良. GRAPES集合卡尔曼滤波资料同化系统Ⅰ:系统设计及初步试验[J]. 气象学报, 2011, 69(4): 620−630.

    Zhuang Zhaorong, Xue Jishan, Li Xingliang. The GRAPES ensemble Kalman filter data assimilation system. Part I: design and its tentative experiment[J]. Acta Meteorologica Sinica, 2011, 69(4): 620−630.
    [22] Oregon State University. TPXO global tide models[DB/OL]. [2019−11−12]. http://volkov.oce.orst.edu/tides/global.html.
    [23] 《海洋图集》编委会. 渤海黄海东海海洋图集(水文)[M]. 北京: 海洋出版社, 1993.

    Editorial Board for Marine Atlas. Marine Atlas of the Bohai Sea, Yellow Sea and East China Sea (Hydrology)[M]. Beijing: China Ocean Press, 1993.
    [24] 林佳. 台风侵袭下的超级城市上海[J]. 中国减灾, 2018(19): 18−21. doi: 10.3969/j.issn.1002-4549.2018.19.007

    Lin Jia. The super city of Shanghai under the typhoon[J]. Disaster Reduction in China, 2018(19): 18−21. doi: 10.3969/j.issn.1002-4549.2018.19.007
    [25] 中央气象台. 台风网[DB/OL]. [2019−11−20]. http://typhoon.nmc.cn/web.html.

    National Meteorological Center. The typhoon web[DB/OL]. [2019−11−20]. http://typhoon.nmc.cn/web.html.
    [26] 陈宗镛. 潮汐学[M]. 北京: 科学出版社, 1980.

    Chen Zongyong. Tidology[M]. Beijing: Science Press, 1980.
    [27] Chen Changsheng, Liu Hedong, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159−186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
    [28] Chen C, Beardsley R C, Cowles G, et al. An unstructured grid, finite-volume community ocean model FVCOM user manual[R]. Cambridge: NOAA, 2013.
    [29] Yang Zhaoqing, Wang Taiping, Leung R, et al. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico[J]. Natural Hazards, 2014, 71(3): 1771−1794. doi: 10.1007/s11069-013-0974-6
    [30] Leith C S. Theoretical skill of Monte Carlo forecast[J]. Monthly Weather Review, 1974, 102(6): 409−418. doi: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [31] Palmer T N, Mureau R, Molteni F. The Monte Carlo forecast[J]. Weather, 1990, 45(6): 198−207. doi: 10.1002/j.1477-8696.1990.tb05619.x
    [32] 韩培, 舒红, 许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展, 2014, 29(10): 1175−1185. doi: 10.11867/j.issn.1001-8166.2014.10.1175

    Han Pei, Shu Hong, Xu Jianhui. A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science, 2014, 29(10): 1175−1185. doi: 10.11867/j.issn.1001-8166.2014.10.1175
    [33] Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723−757. doi: 10.1002/qj.49712555417
    [34] ECMWF. Evaluation of probabilistic prediction systems[EB/OL]. [2019−11−25]. https://www.ecmwf.int/en/elibrary/12555-evaluation-probabilistic-prediction-systems.
    [35] Jolliffe I T, Stephenson D B. Forecast Verification: A Practitioner's Guide in Atmospheric Science[M]. Chichester: Wiley and Sons Ltd, 2003.
    [36] 范宇恩. GRAPES区域集合预报侧边界及模式扰动试验[D]. 成都: 成都信息工程大学, 2019.

    Fan Yuen. The lateral boundary and mode disturbance test of GRAPES region ensemble prediction model[D]. Chengdu: Chengdu University of Information Engineering, 2019.
    [37] 高士博, 闵锦忠, 黄丹莲. EnKF局地化算法对雷达资料同化的影响研究[J]. 大气科学学报, 2016, 39(5): 633−642.

    Gao Shibo, Min Jinzhong, Huang Danlian. Research on the impact of localization methods on radar data assimilation using the ensemble Kalman filter[J]. Transactions of Atmospheric Sciences, 2016, 39(5): 633−642.
    [38] 陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1990.

    Chen Jiyu, Shen Huanting, Yun Caixing, et al. The Dynamical Process and Physiognomy Evolvement in the Yangtze River[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1990.
    [39] 张文舟, 胡建宇, 商少平, 等. 福建沿海风暴潮特征的分析[J]. 海洋通报, 2004, 23(3): 12−19. doi: 10.3969/j.issn.1001-6392.2004.03.002

    Zhang Wenzhou, Hu Jianyu, Shang Shaoping, et al. On the characteristics of storm surges along Fujian coast[J]. Marine Science Bulletin, 2004, 23(3): 12−19. doi: 10.3969/j.issn.1001-6392.2004.03.002
    [40] 刘俊民, 余新晓. 水文与水资源学[M]. 北京: 中国林业出版社, 1999.

    Liu Junmin, Yu Xinxiao. Hydrology and Water Resources[M]. Beijing: China Forestry Publishing House, 1999.
    [41] 盖尔·埃文森. 数据同化—集合卡尔曼滤波[M]. 2版. 刘厂, 赵玉新, 高峰, 译. 北京: 国防工业出版社, 2017.

    Evensen G. Data Assimilation—The Ensemble Kalman Filter[M]. 2nd ed. Liu Chang, Zhao Yuxin, Gao Feng, trans. Beijing: National Defence Industry Press, 2017.
    [42] 王泽人, 马荣华, 段洪涛, 等. 基于集合卡尔曼滤波的太湖叶绿素a浓度同化试验系统设计及实现[J]. 中国科学院大学学报, 2013, 30(5): 628−636.

    Wang Zeren, Ma Ronghua, Duan Hongtao, et al. Design and implementation of an experimental data assimilation system for chlorophyll-a in Lake Taihu based on the ensemble Kalman filter[J]. Journal of University of Chinese Academy of Sciences, 2013, 30(5): 628−636.
    [43] Hamill T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776−2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  64
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 修回日期:  2020-05-01
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回