Organic carbon mass accumulation rate and its influencing factors in intermountain basin sediments of northwest Pacific Ocean
-
摘要: 海洋碳汇作用是大洋生态系统的重要生态系统服务功能,不仅影响着海洋生态系统的能量流动,也是元素循环的重要驱动力。本文以中国大洋48航次采集自西北太平洋典型海山区海盆的沉积物样品和资料为基础,对西北太平洋山间盆地沉积物有机碳质量累积速率(Forgc)特征及影响因素展开初步研究。结果表明,西北太平洋山间盆地有机碳质量累积速率变化范围为1.41~1.73 g/(m2·ka),均值为1.60 g/(m2·ka),以中部偏西海区的有机碳质量累积速率最高;全区平均净初级生产力转移效率约为0.003 1%。西北太平洋山间盆地有机碳质量累积速率和净初级生产力转移效率均低于东太平洋海区和赤道太平洋海区。本区有机碳质量累积速率受水层和沉积层的生物地球化学循环驱动因素,如海洋净初级生产力、沉积物质量累积速率、有机碳含量、氧化还原电位等的综合影响,同时也受距海山距离、水深等地形因子的影响。Abstract: Carbon sinking is one of the important ecological services of ocean ecosystems, which acts as a driving force for energy flow and material cycle. Based on the 48th China scientific cruise in the northwest Pacific Ocean, the investigation on the sedimentary environment of intermountain basin was carried out regarding to the characteristics and influencing factors of total organic carbon mass accumulation rate (Forgc). The results show that the Forgc in the northwestern Pacific Ocean basin ranges from 1.41 g/(m2·ka) to 1.73 g/(m2·ka), with an average of 1.60 g/(m2·ka). As a whole, about 0.003 1% of the region’s net primary productivity is buried in sediments annually. Both Forgc and net primary productivity transfer efficiency are lower in the northwestern Pacific intermountain basin in comparison with those in the eastern Pacific Ocean and equatorial Pacific Ocean. Many environmental factors influenced the
Forgc in this area, induding biogeochemical factors in the water column and sediments, such as net primary productivity, sediment mass accumulation rate, organic carbon content, redox potential, and those topographic factors, such as the distance from the nearest seamount and water depth. -
图 1 采样站位
白色虚线和灰色实线分别表示流经本区的表层和底层海流的路径[24]
Fig. 1 Sampling stations in the study area
The white dot line and grey solid line denote the transport routes of the surface current and bottom current respectively in the study area
表 1 各站位有机碳质量累积速率及相关环境因子
Tab. 1 Forgc and related environmental factors at each station
站位 有机碳质量累积
速率/(g·m−2·ka−1)NPP/
(g·m−2·a−1)TOC含量/% 有机碳密度/
(g·cm−3)沉积物质量累积
速率/(kg·m−2·ka−1)距海山距离/
km水深/m 干密度/
(g·cm−3)孔隙度/% BC1803 1.71±0.16 52.94 0.31±0.02 0.70±0.08 0.56±0.04 70.6 5 426 2.24±0.23 72.89±2.87 BC1812 1.62±0.23 53.80 0.32±0.04 0.67±0.09 0.55±0.08 47.3 5 088 2.14±0.29 72.74±4.05 BC1817 1.56±0.16 56.16 0.29±0.04 0.64±0.10 0.59±0.06 39.3 5 421 2.26±0.28 71.93±2.78 BC1826 1.45±0.23 51.48 0.40±0.02 0.79±0.10 0.37±0.05 34.6 5 480 1.98±0.18 77.74±1.60 BC1833 1.63±0.21 50.56 0.35±0.03 0.69±0.12 0.49±0.05 67.4 5 614 2.00±0.27 72.72±2.43 BC1834 1.66±0.19 48.34 0.46±0.05 1.00±0.12 0.38±0.05 117.6 5 694 2.19±0.20 81.31±2.60 BC1837 1.73±0.19 47.94 0.31±0.04 0.71±0.07 0.58±0.02 7.3 4 601 2.32±0.16 71.95±1.07 BC1839 1.41±0.14 45.94 0.42±0.06 0.72±0.08 0.37±0.04 46.2 5 647 1.76±0.20 77.33±1.28 表 2 主成分提取表
Tab. 2 Principal component extraction table
成分 初始特征值 旋转平方和载入 合计 方差
解释度/%累积
贡献率/%合计 方差
解释度/%累积
贡献率/%F1 3.813 54.472 54.472 3.020 43.138 43.138 F2 1.824 26.055 80.528 2.617 37.390 80.528 F3 0.800 11.422 91.949 F4 0.321 4.592 96.541 F5 0.179 2.562 99.103 F6 0.060 0.850 99.953 F7 0.003 0.047 100 表 3 有机碳质量累积速率及各参数的相关性
Tab. 3 Correlation coefficient of Forgc with various environmental parameters
Forgc/(g·m−2·ka−1) NPP/(g·m−2·a−1) 海山距离/km 水深/m TOC含量/% F/(kg·m−2·ka−1) Mz(Φ) Eh/mV 主成分F1 主成分F2 综合得分 Forgc/(g·m−2·ka−1) 1 NPP/(g·m−2·a−1) 0.138 1 海山距离/km 0.183 −0.080 1 水深/m −0.486 −0.050 0.695 1 TOC含量/% −0.420 −0.660 0.561 0.594 1 F/(kg·m−2·ka−1) 0.637 0.594 −0.390 −0.640 −0.950** 1 Mz(Φ) 0.551 0.361 −0.080 −0.440 −0.620 0.759* 1 Eh/mV −0.318 −0.700 −0.210 −0.130 0.528 −0.506 −0.200 1 主成分F1 0.435 0.872** 0.063 −0.080 −0.752* 0.766* 0.570 −0.879** 1 主成分F2 −0.258 −0.010 0.857** 0.930** 0.624 −0.602 −0.400 −0.270 0 1 综合得分 0.176 0.675 0.587 0.522 −0.190 0.218 0.170 −0.850** 0.778* 0.628 1 注:**代表差异极显著(p<0.01),*代表差异显著(p<0.05)。 表 4 太平洋沉积环境判定
Tab. 4 Determination of the Pacific Ocean sedimentary environment
表 5 太平洋不同海区有机碳质量累积速率、NPP、转移效率的对比
Tab. 5 The comparison of Forge, NPP and transfer efficiency in different Pacific Ocean regions
-
[1] Berger W H, Smetacek V S, Wefer G. Productivity of the Ocean: Present and Past[M]. New York: Wiley & Sons, 1989: 1−34. [2] Vardaro M F, Ruhl H A, Smith K L Jr. Climate variation, carbon flux, and bioturbation in the abyssal North Pacific[J]. Limnology and Oceanography, 2009, 54(6): 2081−2088. doi: 10.4319/lo.2009.54.6.2081 [3] Volz J B, Mogollón J, Geibert W, et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 140: 159−172. doi: 10.1016/j.dsr.2018.08.006 [4] Lodge M, Johnson D, Le Gurun G, et al. Seabed mining: international seabed authority environmental management plan for the Clarion-Clipperton Zone. A partnership approach[J]. Marine Policy, 2014, 49: 66−72. doi: 10.1016/j.marpol.2014.04.006 [5] Bhattacharji S, Friedman G M, Neugebauer H J, et al. Accumulation of Organic Carbon in Marine Sediments: Results from the Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP)[M]//Somdev B, Friedman G, Neugebauer H, et al. Lecture Notes in Earth Sciences. Germany: Springer Verlag, Lecture Notes in Earth Sciences, 1991. [6] Koblentz-Mishke O J, Volkovinsky V V, Kabanova J G. Plankton primary production of the world ocean[M]//Wooster W. Scientific Exploration of the South Pacific. Washington DC: National Academy of Science, 1970: 183−193. [7] Babu C P, Brumsack H J, Schnetger B. Distribution of organic carbon in surface sediment along the eastern Arabian Sea: a revisit[J]. Marine Geology, 1999, 162(1): 91−103. doi: 10.1016/S0025-3227(99)00047-X [8] Bopp L, Aumont O, Cadule P, et al. Response of diatoms distribution to global warming and potential implications: a global model study[J]. Geophysical Research Letters, 2005, 32(19): L19606. [9] Buesseler K O, Antia A N, Chen M, et al. An assessment of the use of sediment traps for estimating upper ocean particle fluxes[J]. Journal of Marine Research, 2007, 65(3): 345−416. doi: 10.1357/002224007781567621 [10] Steinacher M, Joos F, Frölicher T L, et al. Projected 21st century decrease in marine productivity: a multi-model analysis[J]. Biogeosciences, 2010, 7(3): 979−1005. [11] Yoshimizu C, Yoshida T, Nakanishi M, et al. Effects of zooplankton on the sinking flux of organic carbon in Lake Biwa[J]. Limnology, 2001, 2(1): 37−43. doi: 10.1007/s102010170014 [12] Suess E. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization[J]. Nature, 1980, 288(5788): 260−263. doi: 10.1038/288260a0 [13] Boyd P W, McDonnell A, Valdez J, et al. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans Twilight Zone[J]. Limnology and Oceanography: Methods, 2015, 13(9): 494−508. doi: 10.1002/lom3.10043 [14] McDonnell A M P, Boyd P W, Buesseler K O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone[J]. Global Biogeochemical Cycles, 2015, 29(2): 175−193. doi: 10.1002/2014GB004935 [15] Belcher A, Iversen M, Manno C, et al. The role of particle associated Microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica[J]. Limnology and Oceanography, 2016, 61(3): 1049−1064. doi: 10.1002/lno.10269 [16] Rullkötter J. Organic matter: The driving force for early diagenesis[M]//Schulz H D, Zabel M. Marine Geochemistry. 2nd ed. Berlin: Springer: Germany, 2006: 125−168. [17] Henson S A, Sanders R, Madsen E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB004099. [18] Hayes C T, Anderson R F, Jaccard S L, et al. A new perspective on boundary scavenging in the North Pacific Ocean[J]. Earth and Planetary Science Letters, 2013: 369−370: 86−97. [19] Burdige D J. Preservation of organic matter in marine sediments: controls, mechanisms, and animbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467−485. doi: 10.1021/cr050347q [20] Sannigrahi P, Ingall E. Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: Evidence from 31P NMR[J]. Geochemical Transactions, 2005, 6(3): 52−59. doi: 10.1186/1467-4866-6-52 [21] Kristensen E, Penha-Lopes G, Delefosse M, et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences[J]. Marine Ecology Progress Series, 2012, 446: 285−302. [22] 朱本铎, 梁德华, 崔兆国. 西太平洋麦哲伦海山链的海山地貌及成因[J]. 中南大学学报(自然科学版), 2011, 42(S1): 92−98.Zhu Benduo, Liang Dehua, Cui Zhaoguo. Geomorphologic characteristics and genesis of Magellan seamount chain in the western Pacific[J]. Journal of Central South University (Science and Technology), 2011, 42(S1): 92−98. [23] Hu Dunxin, Wu Lixin, Cai Wenju, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299−308. doi: 10.1038/nature14504 [24] Kawabe M, Fujio S. Pacific ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389−403. doi: 10.1007/s10872-010-0034-8 [25] Kawabe M, Fujio S, Yanagimoto D. Deep-water circulation at low latitudes in the western North Pacific[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50(5): 631−656. doi: 10.1016/S0967-0637(03)00040-2 [26] Lin Gengming, Chen Yanghang, Huang Jiang, et al. Regional disparities of phytoplankton in relation to different water masses in the Northwest Pacific Ocean during the spring and summer of 2017[J]. Acta Oceanologica Sinica, 2020, 39(6): 107−118. [27] Müller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1979, 26(12): 1347−1362. [28] 杨伟锋, 陈敏, 刘广山, 等. 楚克奇海陆架区沉积物中核素的分布及其对沉积环境的示踪[J]. 自然科学进展, 2002, 12(5): 515−518.Yang Weifeng, Chen Min, Liu Guangshan, et al. Distribution of nuclides in sediments in the continental shelf area of the Chukeqi Sea and their tracer to the sedimentary environment[J]. Progress in Natural Science, 2002, 12(5): 515−518. [29] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3−26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D [30] Kuliński K, Kędra M, Legeżyńska J, et al. Particulate organic matter sinks and sources in high Arctic fjord[J]. Journal of Marine Systems, 2014, 139: 27−37. doi: 10.1016/j.jmarsys.2014.04.018 [31] Zaborska A, Wlodarska-Kowalczuk M, Legeżyńska J, et al. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords-Signs of maturing of Arctic fjordic systems[J]. Journal of Marine Systems, 2016, 180: 112−123. [32] 钱前坤. 西北太平洋采薇海山附近海域的沉积和生物扰动作用[D]. 厦门: 厦门大学, 2016.Qian Qiankun. Sedimentation and biodisturbance in the waters near the Caiwei Guyot in the Northwest Pacific Ocean[D]. Xiamen: Xiamen University, 2016. [33] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183−200. doi: 10.1016/j.gca.2010.12.024 [34] Herbland A, Bouteiller A L, Raimbault P. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1985, 32(7): 819−836. doi: 10.1016/0198-0149(85)90118-9 [35] Richardson T T. Mechanisms and pathways of small-phytoplankton export from the surface ocean[J]. Annual Review of Marine Science, 2019, 11: 57−74. doi: 10.1146/annurev-marine-121916-063627 [36] Ishizaka J, Kiyosawa H, Ishida K, et al. Meridional distribution and carbon biomass of autotrophic picoplankton in the Central North Pacific Ocean during late northern summer 1990[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41(11/12): 1745−1766. [37] Sugie K, Suzuki K. Characterization of the synoptic-scale diversity, biogeography, and size distribution of diatoms in the North Pacific[J]. Limnology and Oceanography, 2016, 62(3): 884−897. [38] Girault M, Gregori G, Barani A, et al. A study of microphytoplankton and cyanobacteria consortia in four oligotrophic regimes in the western part of the North Pacific subtropical gyre and in the warm pool[J]. Journal of Plankton Research, 2016, 38(5): 1317−1333. doi: 10.1093/plankt/fbw056 [39] 孟凡盛, 倪建宇, 姚旭莹. 西太平洋马尔库斯−威克海山区沉积物中生物硅含量分布[J]. 海洋学研究, 2019, 37(4): 60−67. doi: 10.3969/j.issn.1001-909X.2019.04.006Meng Fansheng, Ni Jianyu, Yao Xuying. Biogenic silica content and distribution in deep sea sediments at Marcus-Wake Seamounts area in the western Pacific Ocean[J]. Journal of Marine Sciences, 2019, 37(4): 60−67. doi: 10.3969/j.issn.1001-909X.2019.04.006 [40] Thistle D. The deep-sea floor: An overview[M]//Tyler A. Ecosystems of the Deep Oceans. Elsevier Science: Amsterdam, The Netherlands, 2003. [41] Aller R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331−345. [42] Yang Zifei, Qian Qiankun, Chen Min, et al. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 156: 103190. [43] 路波. 25万年来西太平洋暖池核心区古海洋学研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2010.Lu Bo. Past 250 kyr paleoceanography in central West Pacific warm pool[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010. [44] 宋金明, 李延, 朱仲斌. Eh和海洋沉积物氧化还原环境的关系[J]. 海洋通报, 1990, 9(4): 33−39.Song Jinming, Li Yan, Zhu Zhongbin. Relaitionship between eh value and redox environment in marine sediments[J]. Marine Science Bulletin, 1990, 9(4): 33−39. [45] 鲍根德, 黄德佩, 汪依凡, 等. 太平洋北部沉积物的元素地球化学特征[J]. 东海海洋, 1988, 6(1): 52−59.Bao Gende, Huang Depei, Wang Yifan, et al. Geochemical characteristics of elements in sediments from the Northern Pacific[J]. Donghai Marine Science, 1988, 6(1): 52−59. [46] Meadows P S, Reichelt A C, Meadows A, et al. Microbial and meiofaunal abundance, redox potential, pH and shear strength profiles in deep sea Pacific sediments[J]. Journal of the Geological Society, London, 1994, 151(2): 377−390. doi: 10.1144/gsjgs.151.2.0377 [47] Smith C R, Berelson W, DeMaster D J, et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9/10): 2295−2317. doi: 10.1016/S0967-0645(97)00022-2 [48] Cartapanis O, Bianchi D, Jaccard S L, et al. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima[J]. Nature Communications, 2016, 7: 10796. doi: 10.1038/ncomms10796