Study on the habitat suitability of Trachypenaeus curvirostris in the Haizhou Bay
-
摘要: 根据2011年及2013−2017年春季和秋季在海州湾进行的底拖网调查数据,结合同步测定的底层水温、底层盐度、水深和资源量等数据,开展鹰爪虾(Trachypenaeus curvirostris)栖息地适宜性的研究,先利用广义加性模型对环境因子进行筛选,再应用提升回归树模型确定各环境因子的权重,然后分别采用算术平均法和几何平均法建立栖息地适宜性指数模型,并通过交叉验证选择最优模型。结果表明:春季鹰爪虾的栖息地适宜性指数模型采用算术平均法构建,选择水深和底层盐度作为变量,具有最小的拟合;秋季鹰爪虾的栖息地适宜性指数模型采用几何平均法构建,选择底层水温和底层盐度作为变量,具有最小的拟合。对春季栖息地适宜性指数模型总偏差贡献率最大的是水深(76.23%),其次是底层盐度(23.77%);对秋季栖息地适宜性指数模型总偏差贡献率最大的是底层水温(82.56%),其次是底层盐度(17.44%)。海州湾春季鹰爪虾的最适栖息水深为24 m以内,底层盐度为29.7~31.8;秋季的最适栖息底层水温为18~24℃,底层盐度为29.2~31.5。本研究表明,环境因子的优化有助于改进栖息地适宜性指数模型,并提升其预测能力。Abstract: Based on the bottom-trawl survey data collected from the Haizhou Bay in spring and autumn of 2011 and 2013−2017, the habitat suitability of Trachypenaeus curvirostris was analyzed based on environmental factors such as bottom temperature, bottom salinity and water depth. Generalized additive model (GAM) was used to determine the optimal combination of environmental factors. Boosted regression tree (BRT) was used to evaluate the weight of each environmental factor in the habitat suitability index (HSI) model. The arithmetic mean model (AMM) and geometic mean model (GMM) were used to build HSI model, and the best model was selected by cross validations. Results showed that HSI model built with depth and bottom salinity in spring had the minimum AIC value, while HSI model constructed with bottom temperature and bottom salinity in autumn had the minimum AIC value. BRT model showed that the weight of depth and bottom salinity were 76.23% and 23.77% in spring, and the weight of bottom temperature and bottom salinity were 82.56% and 17.44% in autumn. The optimal range of depth and bottom salinity for T. curvirostris in spring were within 24 m and 29.7−31.8, respectively. In autumn, the optimal range of bottom temperature and bottom salinity were 18−24℃ and 29.2−31.5, respectively. This study suggested that the optimization of environmental factors was proved to be able to improve the performance of HSI models.
-
图 4 2011年及2013−2017年间春季和秋季海州湾温度和盐度的最大年间差异
a. 春季盐度最大年间差异;b. 秋季盐度最大年间差异;c. 秋季温度最大年间差异
Fig. 4 Maximum annual difference in temperature and salinity in the Haizhou Bay during spring and autumn of 2011 and 2013−2017
a. Maximum annual difference in salinity during spring; b. maximum annual difference in salinity during autumn; c. maximum annual difference in temperature during autumn
图 5 2011年及2013−2017年春季和秋季海州湾鹰爪虾的HSI平均值分布
a. 春季HSI平均值分布图(实线为等深线);b. 秋季HSI平均值分布图(实线为等温线);c. 春季HSI平均值分布图(实线为等盐度线);d. 秋季HSI平均值分布图(实线为等盐度线)
Fig. 5 Distribution of HSI average of Trachypenaeus curvirostris in the Haizhou Bay during spring and autumn of 2011 and 2013−2017
a. Distribution of HSI average during spring (solid line is the isobath line); b. distribution of HSI average during autumn (solid line is the isotherme); c. distribution of HSI average during spring (solid line is the isohaline); d. distribution of HSI average during autumn (solid line is the isohaline)
表 1 海州湾春季和秋季基于不同环境因子组合的GAM模型检验
Tab. 1 Parameters analysis of different combinations of environmental variables by the best generalized additive models (GAMs) in the Haizhou Bay during spring and autumn
GAM模型 AIC值 残差 春季 水深+底层盐度 535.167 932.389 水深+底层盐度+底层水温 540.351 906.996 水深+底层盐度+底层水温+底质类型 541.726 801.401 秋季 底层水温+底层盐度 492.621 1164.971 底层水温+底层盐度+水深 495.437 1097.580 底层水温+底层盐度+水深+底质类型 503.414 1024.174 表 2 AMM和GMM模型预测性能的比较
Tab. 2 Cross-validation of AMM and GMM algorithm in mean confidence interval
季节 AMM GMM 平均 AIC值 平均 R2 平均AIC值 平均R2 春季 −6.978 0.283 −7.185 0.287 秋季 −34.627 0.378 −34.346 0.367 -
[1] 宋海棠, 俞存根, 薛利建. 东海经济虾蟹类渔业生物学[M]. 北京: 海洋出版社, 2012.Song Haitang, Yu Cungen, Xue Lijian. Fishery Biology of Economic Shrimps and Crabs in the East China Sea[M]. Beijing: China Ocean Press, 2012. [2] 宋海棠, 俞存根, 姚光展. 东海鹰爪虾的数量分布和变动[J]. 海洋渔业, 2004, 26(3): 184−188. doi: 10.3969/j.issn.1004-2490.2004.03.005Song Haitang, Yu Cungen, Yao Guangzhan. Study on biomass distribution and variation of Trachypenaeus curvirostris in the East China Sea[J]. Marine Fisheries, 2004, 26(3): 184−188. doi: 10.3969/j.issn.1004-2490.2004.03.005 [3] 中国农业百科全书编辑部. 中国农业百科全书: 水产业卷[M]. 北京: 农业出版社, 1996.Editorial Department of China Agricultural Encyclopedia. China Agricultural Encyclopedia: Aquaculture Volume[M]. Beijing: Agriculture Press, 1996. [4] 张树德, 宋爱勤. 鹰爪虾及其渔业[J]. 生物学通报, 1992(11): 12−14.Zhang Shude, Song Aiqin. Trochypenaeus curvirostris and its fishery[J]. Bulletin of Biology, 1992(11): 12−14. [5] 张树德. 黄渤海鹰爪虾Trachypenaeus curvirostris (Stimpson)种群结构特征的初步研究[J]. 生态学报, 1990, 10(2): 145−149.Zhang Shude. Preliminary study on population structure of Trachypenaeus curvirostris (Stimpson) in Huanghai and Bohai seas[J]. Acta Ecologica Sinica, 1990, 10(2): 145−149. [6] 叶孙忠, 张壮丽, 叶泉土, 等. 闽东北外海鹰爪虾数量的时空分布及其生物学特性[J]. 福建水产, 2012, 34(2): 141−146. doi: 10.3969/j.issn.1006-5601.2012.02.009Ye Sunzhong, Zhang Zhuangli, Ye Quantu, et al. The quantitative distribution and biological characteristics of Trachypenaeus curvirostris in the northeast Fujian outer-sea[J]. Journal of Fujian Fisheries, 2012, 34(2): 141−146. doi: 10.3969/j.issn.1006-5601.2012.02.009 [7] 朱清澄. 鹰爪虾捕捞技术[J]. 中国水产, 1985(6): 16.Zhu Qingcheng. Fishing techniques of Trachypenaeus curvirostris[J]. China Fisheries, 1985(6): 16. [8] 徐丽敏. 南美白对虾与鹰爪虾的保鲜及防黑变初步研究[D]. 青岛: 中国海洋大学, 2008.Xu Limin. Research on the preserving and antimelanosis technology of Penaeus shrimps and Trachypenaeus curvirostris[D]. Qingdao: Ocean University of China, 2008. [9] U. S. Fish and Wildlife Service. Standards for the development of habitat suitability index models[R]. Washington, DC: U. S. Fish and Wildlife Service, 1981: 1−81. [10] Tian Siquan, Chen Xinjun, Chen Yong, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean[J]. Fisheries Research, 2009, 95(2/3): 181−188. [11] 王家樵, 朱国平, 许柳雄. 基于HSI模型的印度洋大眼金枪鱼栖息地研究[J]. 海洋环境科学, 2009, 28(6): 739−742. doi: 10.3969/j.issn.1007-6336.2009.06.034Wang Jiaqiao, Zhu Guoping, Xu Liuxiong. Using HSI model for analyzing the habitat suitability of bigeye tuna (Thunnus obesus) in the Indian Ocean[J]. Marine Environmental Science, 2009, 28(6): 739−742. doi: 10.3969/j.issn.1007-6336.2009.06.034 [12] 邹易阳, 薛莹, 麻秋云, 等. 应用栖息地适宜性指数研究海州湾小黄鱼的空间分布特征[J]. 中国海洋大学学报, 2016, 46(8): 54−63.Zou Yiyang, Xue Ying, Ma Qiuyun, et al. Spatial distribution of Larimichthys polyactis in Haizhou Bay based on habitat suitability index[J]. Periodical of Ocean University of China, 2016, 46(8): 54−63. [13] 张云雷, 薛莹, 于华明, 等. 海州湾春季皮氏叫姑鱼栖息地适宜性研究[J]. 海洋学报, 2018, 40(6): 83−91.Zhang Yunlei, Xue Ying, Yu Huaming, et al. Study on the habitat suitability of Johnius belangerii during spring in the Haizhou Bay, China[J]. Haiyang Xuebao, 2018, 40(6): 83−91. [14] Valavanis V D, Georgakarakos S, Kapantagakis A, et al. A GIS environmental modelling approach to essential fish habitat designation[J]. Ecological Modelling, 2004, 178(3/4): 417−427. [15] Chang J H, Chen Yong, Holland D, et al. Estimating spatial distribution of American lobster Homarus americanus using habitat variables[J]. Marine Ecology Progress Series, 2010, 420: 145−156. [16] Franklin J. Mapping Species Distributions: Spatial Inference and Prediction[M]. New York: Cambridge University Press, 2009: 200−205. [17] 高峰, 陈新军, 官文江, 等. 基于提升回归树的东、黄海鲐鱼渔场预报[J]. 海洋学报, 2015, 37(10): 39−48.Gao Feng, Chen Xinjun, Guan Wenjiang, et al. Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees[J]. Haiyang Xuebao, 2015, 37(10): 39−48. [18] Xue Ying, Guan Lisha, Tanaka K, et al. Evaluating effects of rescaling and weighting data on habitat suitability modeling[J]. Fisheries Research, 2017, 188: 84−94. [19] Jordaan A, Chen Yong, Townsend D W, et al. Identification of ecological structure and species relationships along an oceanographic gradient in the Gulf of Maine using multivariate analysis with bootstrapping[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67(4): 701−719. [20] Xu Binduo, Zhang Chongliang, Xue Ying, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187(5): 252. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12673.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 12673.6−2007, Specifications for oceanographic survey Part 6: Marine biological survey[S]. Beijing: China Standards Press, 2008. [22] Kabacoff R. R in Action: Data Analysis and Graphics with R[M]. 2nd ed. New York: Manning Publications Co, 2015: 185−186. [23] Guisan A, Edwards T C Jr, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecological Modelling, 2002, 157(2/3): 89−100. [24] 牛明香, 李显森, 徐玉成. 基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响[J]. 应用生态学报, 2010, 21(4): 1049−1055.Niu Mingxiang, Li Xiansen, Xu Yucheng. Effects of spatiotemporal and environmental factors on the fishing ground of Trachurus murphyi in southeast Pacific Ocean based on generalized additive model[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 1049−1055. [25] Zhang Yunlei, Yu Huaming, Yu Haiqing, et al. Optimization of environmental variables in habitat suitability modeling for mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent waters[J]. Acta Oceanologica Sinica, 2020, 39(6): 36−47. [26] Burnham K P, Anderson D R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach[M]. 2nd ed. New York: Springer, 2002. [27] Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4): 802−813. [28] Ridgeway G. gbm: Generalized boosted regression models[Z]. R package version 2.1.1, 2015. https://CRAN.R-project.org/package=gbm. [29] Brown S K, Buja K R, Jury S H, et al. Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine[J]. North American Journal of Fisheries Management, 2000, 20(2): 408−435. [30] Chang Y J, Sun Chilu, Chen Yong, et al. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7523−7541. [31] Wakeley J S. A method to create simplified versions of existing habitat suitability index (HSI) models[J]. Environmental Management, 1988, 12(1): 79−83. [32] Vincenzi S, Caramori G, Rossi R, et al. A GIS-based habitat suitability model for commercial yield estimation of Tapes philippinarum in a Mediterranean coastal lagoon (Sacca di Goro, Italy)[J]. Ecological Modelling, 2006, 193(1/2): 90−104. [33] Tanaka K R, Chen Yong. Spatiotemporal variability of suitable habitat for American Lobster (Homarus americanus) in Long Island Sound[J]. Journal of Shellfish Research, 2015, 34(2): 531−543. [34] Chen Changsheng, Gao Guoping, Zhang Yu, et al. Circulation in the Arctic Ocean: results from a high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system[J]. Progress in Oceanography, 2016, 141: 60−80. [35] 刘瑞玉, 钟振如. 南海对虾类[M]. 北京: 农业出版社, 1988.Liu Ruiyu, Zhong Zhenru. Penaeoid Shrimps of the South China Sea[M]. Beijing: Agriculture Press, 1988. [36] 陈桂芳, 隋吉星, 李新正. 黄东海多毛类动物种类组成与优势种分析[J]. 广西科学, 2016, 23(4): 331−338.Chen Guifang, Sui Jixing, Li Xinzheng. Species composition and the dominant species of polychaeta in the Yellow Sea and East China Sea[J]. Guangxi Sciences, 2016, 23(4): 331−338. [37] 杨晓改. 海州湾及其邻近海域浮游生物群落结构及其与环境因子的关系[D]. 青岛: 中国海洋大学, 2015.Yang Xiaogai. Community structure of plankton in Haizhou Bay and adjacent waters and their relationships with environmental factors[D]. Qingdao: Ocean University of China, 2015. [38] 龚彩霞, 陈新军, 高峰, 等. 栖息地适宜性指数在渔业科学中的应用进展[J]. 上海海洋大学学报, 2011, 20(2): 260−269.Gong Caixia, Chen Xinjun, Gao Feng, et al. Review on habitat suitability index in fishery science[J]. Journal of Shanghai Ocean University, 2011, 20(2): 260−269. [39] Yu Wei, Yi Qian, Chen Xinjun, et al. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean off Peru[J]. ICES Journal of Marine Science, 2016, 73(2): 239−249. [40] Becker E A, Forney K A, Ferguson M C, et al. Comparing California Current cetacean-habitat models developed using in situ and remotely sensed sea surface temperature data[J]. Marine Ecology Progress Series, 2010, 413: 163−183. [41] 唐启升. 中国区域海洋学—渔业海洋学[M]. 北京: 海洋出版社, 2012.Tang Qisheng. Regional Oceanography of China Seas—Fishery Oceanography[M]. Beijing: China Ocean Press, 2012. [42] 张树德. 渤、黄海鹰爪虾生物学的初步研究[J]. 海洋科学, 1983(5): 33−36.Zhang Shude. Notes on the biology of Trachypenaeus curvirostris stimpson from Bohai and Huanghai seas[J]. Marine Sciences, 1983(5): 33−36. [43] 张怡晶. 海州湾及邻近海域大型无脊椎动物群落结构及多样性的时空变化[D]. 青岛: 中国海洋大学, 2013.Zhang Yijing. Spatial and temporal variations of macro-invertebrate community structure and diversity in Haizhou Bay and adjacent waters[D]. Qingdao: Ocean University of China, 2013. [44] 唐衍力, 齐广瑞, 王欣, 等. 海州湾近岸张网渔获物种类组成和资源利用现状分析[J]. 中国海洋大学学报, 2014, 44(7): 29−38.Tang Yanli, Qi Guangrui, Wang Xin, et al. Catch composition of the set-net along the coastal water and resource utilization analysis of Haizhou Bay[J]. Periodical of Ocean University of China, 2014, 44(7): 29−38. [45] 陈新军. 渔业资源与渔场学[M]. 北京: 海洋出版社, 2004.Chen Xinjun. Fishery Resources and Fishing Ground[M]. Beijing: China Ocean Press, 2004. [46] 金显仕, 程济生, 邱盛尧, 等. 黄渤海渔业资源综合研究与评价[M]. 北京: 海洋出版社, 2006.Jin Xianshi, Cheng Jisheng, Qiu Shengyao, et al. Comprehensive Study and Evaluation of Fishery Resources in the Huanghai and Bohai Seas[M]. Beijing: China Ocean Press, 2006. [47] 沈国英, 施并章. 海洋生态学[M]. 厦门: 厦门大学出版社, 1990.Shen Guoying, Shi Bingzhang. Marine Ecology[M]. Xiamen: Xiamen University Press, 1990. [48] Pang Z W, Xu B D, Zan X X, et al. Shrimp community structure and its relationships with environmental factors in Haizhou Bay and adjacent waters in spring[J]. Acta Ecologica Sinica, 2015, 35(6): 191−195. [49] 宋海棠, 俞存根, 薛利建, 等. 东海经济虾蟹类[M]. 北京: 海洋出版社, 2006.Song Haitang, Yu Cungen, Xue Lijian, et al. Economic Shrimps and Crabs in the East China Sea[M]. Beijing: China Ocean Press, 2006. [50] 农业部渔业渔政管理局. 中国渔业统计年鉴(2017)[M]. 北京: 中国农业出版社, 2017.Bureau of Fisheries of the Ministry of Agriculture of the People’s Republic of China. China Fishery Statistical Yearbook (2017)[M]. Beijing: China Agriculture Press, 2017. [51] 农业农村部渔业渔政管理局. 中国渔业统计年鉴(2019)[M]. 北京: 中国农业出版社, 2019.Bureau of Fisheries of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Fishery Statistical Yearbook (2019)[M]. Beijing: China Agriculture Press, 2019. [52] 凡守军, 周令华, 于奎杰, 等. 鹰爪虾人工繁殖技术研究[J]. 海洋科学, 1999, 23(3): 1−3. doi: 10.3969/j.issn.1000-3096.1999.03.001Fan Shoujun, Zhou Linghua, Yu Kuijie, et al. Studies on breeding and propagation techiniques for Trachypenaeus curvirostris[J]. Marine Sciences, 1999, 23(3): 1−3. doi: 10.3969/j.issn.1000-3096.1999.03.001 [53] Johnson A F, Jenkins S R, Hiddink J G, et al. Linking temperate demersal fish species to habitat: scales, patterns and future directions[J]. Fish and Fisheries, 2013, 14(3): 256−280.