留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Maxent模型的海地瓜(Acaudina molpadioides)区域适宜生境分布预测研究

何彦龙 刘守海 袁一鸣 蒋科技 王腾 秦玉涛 任远豪

何彦龙,刘守海,袁一鸣,等. 基于Maxent模型的海地瓜(Acaudina molpadioides)区域适宜生境分布预测研究[J]. 海洋学报,2021,43(4):65–74 doi: 10.12284/hyxb2021042
引用本文: 何彦龙,刘守海,袁一鸣,等. 基于Maxent模型的海地瓜(Acaudina molpadioides)区域适宜生境分布预测研究[J]. 海洋学报,2021,43(4):65–74 doi: 10.12284/hyxb2021042
He Yanlong,Liu Shouhai,Yuan Yiming, et al. The potential suitability habitat prediction of Acaudina molpadioides based on Maxent model[J]. Haiyang Xuebao,2021, 43(4):65–74 doi: 10.12284/hyxb2021042
Citation: He Yanlong,Liu Shouhai,Yuan Yiming, et al. The potential suitability habitat prediction of Acaudina molpadioides based on Maxent model[J]. Haiyang Xuebao,2021, 43(4):65–74 doi: 10.12284/hyxb2021042

基于Maxent模型的海地瓜(Acaudina molpadioides)区域适宜生境分布预测研究

doi: 10.12284/hyxb2021042
基金项目: 国家重点研发计划重点专项(2016YFC1402405)
详细信息
    作者简介:

    何彦龙(1980-),甘肃省陇西县人,博士,高级工程师,主要从事海岸带生态评估研究。E-mail:ylhe@ecs.mnr.gov.cn

  • 国家核安全局关于近期海洋生物或异物影响核电厂取水安全事件的通报。
  • 中图分类号: P714.21+.5;P714+.5

The potential suitability habitat prediction of Acaudina molpadioides based on Maxent model

  • 摘要: 生境适宜性预测对物种保护、外来生物及有害生物防治具有重要指导意义。本研究应用Maxent模型对宁德晴川湾海域海地瓜适宜性生境进行预测,模型的预测结果达到优秀水平,并结合ArcGIS软件对海地瓜适宜生境划分为5级。研究结果表明,极高和较高海地瓜适宜生境占总研究区域的1.3%,面积为25.6 km2。水体环境、沉积环境和生态群落均对海地瓜分布产生影响,水体环境中水深、盐度、无机氮和活性磷酸盐是影响海地瓜生境适宜性的主要水环境因子,对海地瓜适宜生境预测累计贡献率达39%,尤其水深是制约海地瓜分布最为主要的因子,预测贡献率为27%;沉积物粒度、硫化物和总有机碳是沉积环境主要影响因子,预测累计贡献率达40.4%,其中沉积物黏土颗粒体积占比是第二重要影响因子,预测贡献率约为18%。浮游动物密度和生物量以及底栖动物种类数量均对海地瓜分布产生一定影响,三者预测累计贡献率为16.8%,其中浮游动物密度的贡献相比其他生物要素最为重要,贡献率约为8%。总体上,海地瓜最为理想的分布区是近岸水深小于5 m、盐度相对较低、沉积物有机碳含量较高、底质为黏土−粉砂土为主的浅水淤泥质生境。
    1)  国家核安全局关于近期海洋生物或异物影响核电厂取水安全事件的通报。
  • 图  1  调查站位布设

    Fig.  1  The sampling sites at the study area

    图  2  PCR电泳图谱

    Fig.  2  The PCR electrophoretogram

    图  3  海地瓜Maxent预测模型AUC曲线(a)和刀切法检验结果(b)

    Fig.  3  The results of AUC test for Acaudina molpadioides (a) and the results of jackknife test (b) by Maxent model

    图  4  潜在分布概率对主要环境变量的响应曲线

    Fig.  4  Response curves of potential distribution probability to major environmental variables

    图  5  Zonation特性曲线

    Fig.  5  Performance curve of Zonation model

    图  6  海地瓜分布预测区域

    Fig.  6  The potential spatial distribution of Acaudina molpadioides

    图  7  研究区生态环境空间变化

    a. N:P比值; b. 沉积物粒度体积百分比;c. 沉积物总有机碳;d. 浮游动物生物量

    Fig.  7  Spatial change of ecological environment elements in the study area

    a. N:P ratio; b. the volume percentage of substrate of sediment clay; c. total organic carbon; d. the biomass of zooplankton

    表  1  海地瓜生境适宜性分布预测应用的生态环境变量

    Tab.  1  The ecological environment variables used to predict the potential habitat of the Acaudina molpadioides

    环境变量环境要素单位代号
    水体环境温度t
    盐度s
    水深mdeep
    pHpH
    悬浮物浓度mg/LSed.
    浑浊度NTUNTU
    化学需要量mg/LCOD
    溶解氧mg/LDO
    生化需氧量mg/LBOD
    叶绿素 amg/LChl a
    总碳mg/LTC
    总氮mg/LTN
    总磷mg/LTP
    无机氮mg/LN
    活性磷酸盐mg/LP
    活性硅酸盐mg/LSi
    生物种类构成及特征浮游植物多样性PH
    浮游植物密度ind./LPdens
    浮游植物种类数NPSN
    浮游动物多样性ZH
    浮游动物密度ind./m3Zdens
    浮游动物种类数NZSN
    浮游动物生物量mg/m3zbio
    底栖生物多样性Benh
    底栖动物种类数NBSN
    底栖生物生物量g/m2BBIO
    沉积环境沉积物硫化物mg/kgNS1
    沉积物含水率%WC
    有机碳%TOC
    黏土质粉砂%CC
    粉砂%SC
    %Sand
    下载: 导出CSV

    表  2  各环境变量贡献率

    Tab.  2  Contribution percent of each environmental factor in MaxEnt modeling

    环境变量贡献率/%
    水深27
    黏土颗粒体积占比17.6
    沉积物硫化物含量14.3
    浮游动物密度8.3
    粉砂颗粒体积占比6.2
    活性磷酸盐6
    浮游动物生物量5.9
    无机氮3
    海水盐度3
    底栖生物种类数2.6
    沉积物总有机碳2.3
    底栖生物多样性指数1.1
    下载: 导出CSV

    表  3  分布区等级及分布面积占比

    Tab.  3  distribution grade and the percentage of distribution area

    潜在分布区等级分布预测概率/%栅格数面积/km2占比/%
    极高适宜分布区>951905.90.3
    较高适宜分布区80~9561919.71
    中度适宜分布区60~801 40043.42.2
    较低适宜分布区40~603 331108.55.5
    极低适宜分布区<4054 6861795.591
    下载: 导出CSV
  • [1] 王金亮, 陈姚. 3S技术在野生动物生境研究中的应用[J]. 地理与地理信息科学, 2004, 20(6): 44−77. doi: 10.3969/j.issn.1672-0504.2004.06.010

    Wang Jinliang, Chen Yao. Applications of 3S technology in wildlife habitat researches[J]. Geography and Geo-Information Science, 2004, 20(6): 44−77. doi: 10.3969/j.issn.1672-0504.2004.06.010
    [2] 刘振生, 高惠, 滕丽微, 等. 基于MAXENT模型的贺兰山岩羊生境适宜性评价[J]. 生态学报, 2013, 33(22): 7243−7249.

    Liu Zhensheng, Gao Hui, Teng Liwei, et al. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling[J]. Acta Ecologica Sinica, 2013, 33(22): 7243−7249.
    [3] Drake J A. Community-assembly mechanics and the structure of an experimental species ensemble[J]. The American Naturalist, 1991, 137(1): 1−26.
    [4] Chase J M. Community assembly: when should history matter?[J]. Oecologia, 2003, 136(4): 489−498.
    [5] Thuiller W, Richardson D M, Pyšek P, et al. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale[J]. Global Change Biology, 2005, 11: 2234−2250.
    [6] Phillips S J, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31: 161−175.
    [7] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915−927.

    Qiao Huijie, Hu Junhua, Huang Jihong. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11): 915−927.
    [8] 张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7): 770−778. doi: 10.17521/cjpe.2016.0380

    Zhang Qin, Zhang Dongfang, Wu Mingli, et al. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chinese Journal of Plant Ecology, 2017, 41(7): 770−778. doi: 10.17521/cjpe.2016.0380
    [9] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190: 231−259.
    [10] 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295−302.

    Xing Dingliang, Hao Zhanqing. The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011, 19(3): 295−302.
    [11] 马松梅, 张明理, 张宏祥, 等. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11): 1327−1335. doi: 10.3773/j.issn.1005-264x.2010.11.010

    Ma Songmei, Zhang Mingli, Zhang Hongxiang, et al. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using maximum entropy and genetic algorithm for rule-set prediction[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1327−1335. doi: 10.3773/j.issn.1005-264x.2010.11.010
    [12] 郝朝运, 谭乐和, 范睿, 等. 利用最大熵模型预测药用植物海南药的潜在地理布局[J]. 热带作物学报, 2011, 32(8): 1561−1566. doi: 10.3969/j.issn.1000-2561.2011.08.037

    Hao Chaoyun, Tan Lehe, Fan Rui, et al. Predicting potential geographical distributions of medicinal plant Piper hainanense using maximum entropy[J]. Chinese Journal of Tropical Crops, 2011, 32(8): 1561−1566. doi: 10.3969/j.issn.1000-2561.2011.08.037
    [13] Roberto M, Zamora R, Molina J R, et al. Predictive modeling of microhabitats for endemic birds in south Chilean temperate forests using maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6: 364−370.
    [14] 颜文博, 王琦, 王超. 应用Maxent模型分析秦巴地区朱鹮适宜繁殖地的分布[J]. 动物学杂志, 2015, 50(2): 185−193.

    Yan Wenbo, Wang Qi, Wang Chao. Evaluation of potential breeding habitat distribution with Maxent model for crested ibis in the Qinling-Bashan region[J]. Chinese Journal of Zoology, 2015, 50(2): 185−193.
    [15] 朱明畅, 曹铭昌, 汪正祥, 等. 黄河三角洲自然保护区水禽生境适宜性模糊综合评价[J]. 华中师范大学学报(自然科学版), 2015, 49(2): 287−294, 301.

    Zhu Mingchang, Cao Mingchang, Wang Zhengxiang, et al. Fuzzy evaluation of waterfowl habitat suitability at the Yellow River delta nature reserve[J]. Journal of Huazhong Normal University (Natural Sciences), 2015, 49(2): 287−294, 301.
    [16] 曹铭昌, 孙孝平, 乐志芳, 等. 基于Maxent模型的丹顶鹤越冬生境变化分析: 以盐城保护区为例[J]. 生态与农村环境学报, 2016, 32(6): 964−970. doi: 10.11934/j.issn.1673-4831.2016.06.015

    Cao Mingchang, Sun Xiaoping, Le Zhifang, et al. Analysis of changes in wintering habitat of red-crowned cranes based on Maxent model: A case study of Yancheng nature reserve[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 964−970. doi: 10.11934/j.issn.1673-4831.2016.06.015
    [17] 李丽鹤, 刘会玉, 林振山, 等. 基于Maxent和Zonation的加拿大一枝黄花入侵重点监控区确定[J]. 生态学报, 2017, 37(9): 3124−3132.

    Li Lihe, Liu Huiyu, Lin Zhenshan, et al. Identifying priority areas for monitoring the invasion of Solidago canadensis based on Maxent and Zonation[J]. Acta Ecologica Sinica, 2017, 37(9): 3124−3132.
    [18] 张熙骜, 隋晓云, 吕植, 等. 基于Maxent的两种入侵性鱼类(麦穗鱼和鲫)的全球适生区预测[J]. 生物多样性, 2014, 22(2): 182−188.

    Zhang Xi’ao, Sui Xiaoyun, Lü Zhi, et al. A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using Maxent[J]. Biodiversity Science, 2014, 22(2): 182−188.
    [19] 车乐, 曹博, 白成科, 等. 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价[J]. 生态学杂志, 2014, 33(6): 1623−1628.

    Chen Le, Cao Bo, Bai Chengke, et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS[J]. Chinese Journal of Ecology, 2014, 33(6): 1623−1628.
    [20] 刘想, 龚熹, 陈思斯, 等. 基于Maxent和ArcGIS模拟檫木分布格局及其栖息地的变化[J]. 植物科学学报, 2018, 36(3): 320−326. doi: 10.11913/PSJ.2095-0837.2018.30320

    Liu Xiang, Gong Xi, Chen Sisi, et al. Simulation of the distribution pattern of Sassafras tzumu and changes in habitat based on ArcGIS and Maxent[J]. Plant Science Journal, 2018, 36(3): 320−326. doi: 10.11913/PSJ.2095-0837.2018.30320
    [21] 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 25−29.

    Liu Qingliang, Li Yao, Fang Shengzuo. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 25−29.
    [22] 徐军, 曹博, 白成科. 基于MaxEnt濒危植物独叶草的中国潜在适生分布区预测[J]. 生态学杂志, 2015, 34(12): 3354−3359.

    Xu Jun, Cao Bo, Bai Chengke. Prediction of potential suitable distribution of endangered plant Kingdonia uniflora in China with MaxEnt[J]. Chinese Journal of Ecology, 2015, 34(12): 3354−3359.
    [23] 齐增湘, 徐卫华, 熊兴耀, 等. 基于MAXENT模型的秦岭山系黑熊潜在生境评价[J]. 生物多样性, 2011, 19(3): 343−352.

    Qi Zengxiang, Xu Weihua, Xiong Xingyao, et al. Assessment of potential habitat for Ursus thibetanus in the Qinling Mountains[J]. Biodiversity Science, 2011, 19(3): 343−352.
    [24] 蔡立哲. 海洋底栖生物生态学和生物多样性研究进展[J]. 厦门大学学报(自然科学版), 2006, 45(S2): 83−89.

    Cai Lizhe. Progress on marine benthic ecology and biodiversity[J]. Journal of Xiamen University (Natural Science), 2006, 45(S2): 83−89.
    [25] 张均龙, 史本泽, 赵峰, 等. 中国海洋底栖生物学发展回顾与展望[J]. 海洋科学集刊, 2016, 51: 194−204. doi: 10.12036/hykxjk20160725005

    Zhang Junlong, Shi Benze, Zhao Feng, et al. Progress and prospect in marine Benthology in China[J]. Studia Marina Sinica, 2016, 51: 194−204. doi: 10.12036/hykxjk20160725005
    [26] 苏永昌, 刘淑集, 刘秋凤, 等. 海地瓜营养成分的分析及评价[J]. 渔业研究, 2016, 38(4): 288−294.

    Su Yongchang, Liu Shuji, Liu Qiufeng, et al. Analysis and evaluation of nutritional components in Acaudina molpadioides[J]. Journal of Fisheries Research, 2016, 38(4): 288−294.
    [27] Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857): 1285−1293.
    [28] Hanley J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1): 29−36.
    [29] Moilanen A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies[J]. Biological Conservation, 2007, 134(4): 571−579.
    [30] 陈海燕, 周红, 慕方红, 等. 北黄海小型底栖生物丰度和生物量时空分布特征[J]. 中国海洋大学学报, 2009, 39(4): 657−663.

    Chen Haiyan, Zhou Hong, Mu Fanghong, et al. The spatial-temporal distributional characteristics of meiobenthic abundance and biomass in the Northern Yellow Sea[J]. Periodical of Ocean University of China, 2009, 39(4): 657−663.
    [31] 何鎏臻, 寿鹿, 廖一波, 等. 长江口及其临近海域大型底栖动物功能群演替初探[J]. 海洋与湖沼, 2020, 51(3): 477−483. doi: 10.11693/hyhz20191100238

    He Liuzhen, Shou Lu, Liao Yibo, et al. The succession of macrobenthic functional groups in Changjiang River Estuary and its adjacent waters[J]. Oceanologia et Limnologia Sinica, 2020, 51(3): 477−483. doi: 10.11693/hyhz20191100238
    [32] 李少文, 刘元进, 李凡, 等. 莱州湾大型底栖动物功能群现状[J]. 生态学杂志, 2013, 32(2): 380−388.

    Li Shaowen, Liu Yuanjin, Li Fan, et al. Macrobenthic functional groups in Laizhou Bay, East China[J]. Chinese Journal of Ecology, 2013, 32(2): 380−388.
    [33] 熊金林, 梅兴国, 胡传林. 不同污染程度湖泊底栖动物群落结构及多样性比较[J]. 湖泊科学, 2003, 15(2): 160−168. doi: 10.3321/j.issn:1003-5427.2003.02.010

    Xiong Jinlin, Mei Xingguo, Hu Chuanlin. Comparative study on the community structure and biodiversity of Zoobenthos in lakes of different pollution states[J]. Journal of Lake Sciences, 2003, 15(2): 160−168. doi: 10.3321/j.issn:1003-5427.2003.02.010
    [34] 刘乐丹, 王先云, 陈丽平, 等. 淀山湖底栖动物群落结构及其与沉积物碳氮磷的关系[J]. 长江流域资源与环境, 2018, 27(6): 1269−1278. doi: 10.11870/cjlyzyyhj201806010

    Liu Ledan, Wang Xianyun, Chen Liping, et al. Community structure of macrozoobenthos with relationships to carbon, nitrogen and phosphorus in the sediment of Dianshan Lake (Shanghai, China)[J]. Resources and Environment in the Yangtze Basin, 2018, 27(6): 1269−1278. doi: 10.11870/cjlyzyyhj201806010
    [35] 王海明, 蔡如星, 曾地刚, 等. 浙北潮下带(0~−5 m)大型底栖生物生态[J]. 东海海洋, 1996, 14(4): 67−77.

    Wang Haiming, Cai Ruxing, Zeng Digang, et al. Ecology of macrobenthos in subtidal zone (0~−5 m) of northern Zhejiang[J]. Donghai Marine Science, 1996, 14(4): 67−77.
    [36] 张海萍, 张宇航, 马凯, 等. 河流微生境异质性与大型底栖动物空间分布的关系[J]. 应用生态学报, 2017, 28(9): 3023−3031.

    Zhang Haiping, Zhang Yuhang, Ma Kai, et al. Relationship of river microhabitat heterogeneity and macroinvertebrate spatial distribution[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 3023−3031.
    [37] 蔡丽萍. 六横岛东部围填海对沉积物和底栖生物的影响[D]. 舟山: 浙江海洋学院, 2012.

    Cai Liping. Reclamation impacts on sediments and macrobenthos in eastern Liuheng Island[D]. Zhoushan: Zhejiang Ocean University, 2012.
    [38] 黄昆, 陈岚, 傅婷婷, 等. 厦门湾大型底栖动物多样性指数空间分布及其与环境因子的关系[J]. 渔业研究, 2019, 41(4): 293−301.

    Huang Kun, Chen Lan, Fu Tingting, et al. Spatial distribution of macrobenthic diversity factors in Xiamen Bay and its relationship with environmental factors[J]. Journal of Fisheries Research, 2019, 41(4): 293−301.
    [39] 吕巍巍. 围垦对横沙东滩大型底栖动物影响的初步研究[D]. 上海: 华东师范大学, 2013.

    Lü Weiwei. The preliminary study on the influence of reclamation on macrobenthos in the Hengsha East Shoal[D]. Shanghai: East China Normal University, 2013.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  213
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-11-10
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回