Analysis of the influence of the vertical structure of water temperature on the catch rate of yellowfin tuna in the tropical central and western Pacific based on the GAM model
-
摘要: 黄鳍金枪鱼索饵水层影响延绳钓捕捞效率,而黄鳍金枪鱼索饵水层分布受水温垂直结构的影响,因此本文采用GAM模型分析次表层环境变量对延绳钓黄鳍金枪鱼渔获率的影响,评估黄鳍金枪鱼垂直水层分布对中西太平洋黄鳍金枪鱼延绳钓单位捕捞努力量渔获量(Catch Per Unite Effort, CPUE)的作用。模型结果表明,环境因子对热带中西太平洋延绳钓黄鳍金枪鱼渔获率空间分布影响明显。黄鳍金枪鱼延绳钓CPUE在2012年之后快速增多,高渔获率月份出现在北半球夏季,空间上在10°S,140°E附近区域。温跃层上界温度和深度、温跃层下界深度、18℃等温线深度、△8℃等温线深度及其和温跃层下界深度的深度差对延绳钓渔获率影响较大,是影响热带中西太平洋黄鳍金枪鱼延绳钓渔获率的关键环境因子。随着温跃层上界温度和深度值变大,延绳钓CPUE逐渐递增,对延绳钓CPUE影响密切的温度和深度分别为27~28℃和70~90 m。温跃层下界深度对延绳钓CPUE影响在250~280 m时最大;之后随着下界深度的变大,CPUE快速下降。18℃等温线深度对延绳钓CPUE影响呈现先震荡后递增的趋势,影响密切的区域在230 m深度上下。△8℃等温线深度与温跃层下界深度的差值对热带中西太平洋黄鳍金枪鱼延绳钓CPUE影响呈现先快速递减后缓慢增加的趋势,在深度差为70 m上下时影响最密切。研究结果揭示,在黄鳍金枪鱼活动水层受限或栖息水层和延绳钓作业深度相吻合时,延绳钓渔获率最高。依据黄鳍金枪鱼垂直活动水层调整延绳钓投钩,可以提高渔获率。因此,采用延绳钓CPUE进行渔场和资源评估时要考虑金枪鱼适宜垂直活动空间。
-
关键词:
- 黄鳍金枪鱼 /
- 次表层环境 /
- 水温垂直结构 /
- 单位捕捞努力量渔获量
Abstract: The foraging depth of yellowfin tuna (Thunnus obesus), which is primarily influenced by the vertical structure of the water temperature, has a significant effect on longline catch rates. Therefore, the generalized additive model (GAM) was applied to analyse the influence of subsurface environmental variables on the longline catch per unit of effort (CPUE) in the central and western Pacific. The results show that subsurface environmental factors have significant impacts on the spatial distribution of yellowfin tuna catches in longline fisheries. The longline CPUE for the yellowfin tuna in the tropical central and western Pacific rise rapidly after 2012. A high catch rate appears in the northern hemisphere during summer in the region near 10°S, 140°E. The upper boundary temperature and depth of the thermocline, the lower depth of the thermocline, the depth of the isotherm at 18℃, and the relative depth between △8℃ and the lower depth of thermocline greatly influence the longline fishing rate. These key environmental factors affect the tropical central and western Pacific yellowfin tuna longline catch. The CPUE increases as the temperature and the depth of the upper boundary of the thermocline increased. The strongly associated relationships between the upper boundary temperature and depth with CPUE were 27−28℃ and 70−90 m, respectively. High catch rates are observed when the lower boundary depth of the thermocline is from 250 m to 280 m. Then, as the lower boundary depth increased, the CPUE value quickly decreased. The effect of the 18℃ isotherm depth on the CPUE of longline fishing initially fluctuated and then increased. The nonlinear effects of the relative depth between △8℃ and the lower depth of the thermocline first decreased and then increased slowly. The strong associations between CPUE and the 18℃ isotherm depths and relative depth are at 230 m and 70 m, respectively. The catch rates reaches a maximum when the vertical habitat is compressed, making it consistent with hooking depth. The catch rates could be changed by adjusting the depth of hooks. The vertical habitat of tuna should be taken into account in fisheries stock assessments and fishing grounds analysis. -
表 1 中西太平洋黄鳍金枪鱼时空变量GAM模型F-检验值
Tab. 1 F-test value of the spatio-temporal GAM model of yellowfin tuna in western and central Pacific
变量 自由度 F p 年 2.79 191.09 <2×10−16 月 2.89 47.13 <2×10−16 纬度 3 2 613.34 <2×10−16 经度 3 1606.35 <2×10−16 表 2 中西太平洋黄鳍金枪鱼时空变量GAM模型统计参数
Tab. 2 Statistical characteristics of the spatio-temporal GAM model of yellowfin tuna in western and central Pacific
公式 AIC值 偏差解释率/% 决定系数 $ {{\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{year}})}$ 28 039.2 2 0.02 $ { {\rm{ln} }({\rm{CPUE}}+1)=s({\rm{year}})+s({\rm{month}})}$ 27 879.19 3.16 0.031 $ {\begin{aligned}&{\rm{ln}}({\rm{CPUE}}+1)=s({\rm{year}})+\\&s({\rm{month}})+{{s}}({\rm{lon}})\end{aligned}}$ 24 090.88 26.3 0.263 $ {\begin{aligned}&{\rm{ln}}({\rm{CPUE}}+1)=s({\rm{year}})+\\&s({\rm{month}})+{{s}}({\rm{lon}})+s({\rm{lat}})\end{aligned}}$ 19 965.13 45.3 0.452 表 3 次表层环境变量GAM模型统计参数
Tab. 3 Statistical characteristics of the spatio-temporal GAM model for subsurface environmental variables
变量 自由度 F p 上界温度 1.55 458.19 <10−6 上界深度 2.33 80.83 <10−6 下界温度 2.97 39.95 <10−6 下界深度 3 199.81 <10−6 厚度 2.9 23.47 <10−6 强度 2.86 10.55 <10−6 12℃深度 2.97 29.69 <10−6 18℃深度 2.96 95.09 <10−6 深度差 2.98 106.09 <10−6 表 4 次表层环境变量GAM模型检验值
Tab. 4 GAM model test value of subsurface environmental variables
公式 AIC值 偏差解释率/% 决定系数 $ {{\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}})}$ 25 918.51 15.9 0159 $ {{\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}})}$ 25 508.2 18.4 0.183 $ {{\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}}) + s({\rm{downwd}})}$ 25 266.73 19.8 0.197 $ {{\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}}) + s({\rm{downsd}}) + s({\rm{downwd}})}$ 24 769.75 22.6 0.226 $ {\begin{array}{l} {\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}}) + s(hd) + s({\rm{downsd}}) + s({\rm{downwd}}) \end{array} }$ 24 666.62 23.2 0.232 $ {\begin{array}{l} {\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}}) + s({\rm{hd}}) + s({\rm{downsd}}) + s({\rm{downwd}}) + s({\rm{intensity}}) \end{array} }$ 24 622.31 23.5 0.234 $ {\begin{array}{l} {\rm{ln}} ({\rm{CPUE}} + 1) = s({\rm{upwd}}) + s({\rm{upsd}}) + s({\rm{hd}}) + s({\rm{downsd}}) + s({\rm{downwd}}) + s({\rm{intensity}}) + s({\rm{D}}12) \end{array} }$ 24 409.33 24.7 0.246 $ {\begin{array}{l} {\rm{ln} } ({\rm{CPUE} } + 1) = s({\rm{upwd} }) + s({\rm{upsd} }) + s({\rm{hd} }) + s({\rm{downsd} })+ s({\rm{downwd} }) + s({\rm{intensity} }) + s({\rm{D} }12) + s({\rm{D}}18) \end{array} }$ 24 066.41 26.6 0.265 $ {\begin{array}{l} {\rm{ln} } ({\rm{CPUE} } + 1) = s({\rm{upwd} }) + s({\rm{upsd} }) + s({\rm{hd} }) + s({\rm{downsd} }) + s({\rm{downwd} }) + s({\rm{intensity} }) + s({\rm{D} }12) + s({\rm{D} }18) + s({{sdc} }) \end{array} }$ 23 784.19 28.1 0.279 -
[1] Bertrand A, Josse E, Bach P, et al. Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(6): 1002−1013. [2] Boggs C H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips[J]. Fishery Bulletin, 1992, 90(4): 642−658. [3] Bigelow K A, Maunder M N. Does habitat or depth influence catch rates of pelagic species?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64(11): 1581−1594. [4] Schaefer K M, Fuller D W, Block B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data[J]. Marine Biology, 2007, 152(3): 503−525. [5] Schaefer K M, Fuller D W, Block B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering[J]. Fisheries Research, 2011, 112(1/2): 22−37. [6] Block B A, Keen B, Castillo B, et al. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range[J]. Marine Biology, 1997, 130: 119−132. [7] Deary A L, Moret-Ferguson S, Engels M, et al. Influence of central pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species[J]. Pacific Science, 2015, 69(4): 461−475. [8] Prince E D, Goodyear C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fisheries Oceanography, 2006, 15(6): 451−464. [9] Prince E D, Luo J G, Goodyear C P, et al. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes[J]. Fisheries Oceanography, 2010, 19(6): 448−462. [10] Brill R W, Block B A, Boggs C H, et al. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes[J]. Marine Biology, 1999, 133(3): 395−408. [11] Brill R W, Bigelow K A, Musyl M K, et al. Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology[J]. Collective Volume of Scientific Papers ICCAT, 2005, 57(2): 142−161. [12] Lan K W, Shimada T, Lee M A, et al. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical pacific ocean[J]. Remote Sensing, 2017, 9(5): 444. [13] 杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78−87.Yang Shenglong, Zhang Bianbian, Jin Shaofei, et al. Relationship between the temporal-spatial distribution of longline fishing grounds of yellowfin tuna (Thunnus albadares) and the thermocline characteristics in the Western and Central Pacific Ocean[J]. Haiyang Xuebao, 2015, 37(6): 78−87. [14] Briand K, Molony B, Lehodey P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fisheries Oceanography, 2011, 20(6): 517−529. [15] Josse E, Bach P, Dagorn L. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys[J]. Hydrobiologia, 1998, 371/372: 61−69. [16] 宋利明, 陈新军, 许柳熊. 大西洋中部黄鳍金枪鱼(Thunnus albacares)的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64−68. doi: 10.3321/j.issn:0029-814X.2004.01.010Song Liming, Chen Xinjun, Xu Liuxiong. Relationship between vertical distribution of yellowfin tunas’ (Thunnus albacares) and the concerned environmental factors in the Central Atlantic Ocean[J]. Oceanologia et Limnologia Sinica, 2004, 35(1): 64−68. doi: 10.3321/j.issn:0029-814X.2004.01.010 [17] Mohri M, Nishida T. Consideration on distribution of adult yellowfin tuna (Thunnus albacares) in the Indian Ocean based on Japanese tuna longline fisheries and survey information[J]. IOTC Proceeding, 2000(3): 276−282. [18] Hazen E L, Johnston D W. Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific[J]. Fisheries Oceanography, 2010, 19(6): 427−433. [19] 宋利明, 张禹, 周应祺. 印度洋公海温跃层与黄鳍金枪鱼和大眼金枪鱼渔获率的关系[J]. 水产学报, 2008, 32(3): 369−378.Song Liming, Zhang Yu, Zhou Yingqi. The relationships between the thermocline and the catch rate of Thunnus albacares and Thunnus obesus in the high seas of the Indian Ocean[J]. Journal of Fisheries of China, 2008, 32(3): 369−378. [20] 栾松鹤, 戴小杰, 田思泉, 等. 中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J]. 海洋渔业, 2015, 37(6): 501−509. doi: 10.3969/j.issn.1004-2490.2015.06.003Luan Songhe, Dai Xiaojie, Tian Siquan, et al. Vertical distribution of main species captured by tuna longline fishery in the western and central Pacific[J]. Marine Fisheries, 2015, 37(6): 501−509. doi: 10.3969/j.issn.1004-2490.2015.06.003 [21] 王少琴, 许柳雄, 朱国平, 等. 中西太平洋金枪鱼围网的黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J]. 大连海洋大学学报, 2014, 29(3): 303−308.Wang Shaoqin, Xu Liuxiong, Zhu Guoping, et al. Spatial-temporal profiles of CPUE and relations to environmental factors for yellowfin tuna Thunnus albacores from purse-seine fishery in western and central Pacific Ocean[J]. Journal of Dalian Fisheries University, 2014, 29(3): 303−308. [22] Leroy B, Itano D G, Usu T. Vertical Behavior and the Observation of FAD Effects on Tropical Tuna in the Warm-Pool of the Western Pacific Ocean[C]//Western and Central Pacific Fisheries Commission Scientific Committee, Six Regular Session. Nuku’alofa, Tonga, 2010. [23] Harley S J, Myers R A, Dunn A. Is catch-per-unit-effort proportional to abundance?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(9): 1760−1772. [24] Maunder M N, Langley A D. Integrating the standardization of catch-per-unit-of-effort into stock assessment models: testing a population dynamics model and using multiple data types[J]. Fisheries Research, 2004, 70(2/3): 389−395. [25] Kell L, Palma C, Prince E. Standardization of blue marlin CPUE taking into account habitat compression[J]. Collective Volume of Scientific Papers ICCAT, 2011, 66(4): 1738−1759. [26] Hinton M G, Nakano H. Standardizing catch and effort statistics using physiology, ecology, or behavioral constraints and environmental data, with an application to Blue Marlin (Makaira nigricans) catch and effort data from Japanese longline fisheries in the Pacific[J]. Inter-American Tropical Tuna Commission Bulletin, 1996, 21: 171−200.