留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北太平洋北部的风能输入门户

张宇 崔超然 杨倩 管玉平

张宇,崔超然,杨倩,等. 北太平洋北部的风能输入门户[J]. 海洋学报,2021,43(3):40–47 doi: 10.12284/hyxb2021039
引用本文: 张宇,崔超然,杨倩,等. 北太平洋北部的风能输入门户[J]. 海洋学报,2021,43(3):40–47 doi: 10.12284/hyxb2021039
Zhang Yu,Cui Chaoran,Yang Qian, et al. North part of the North Pacific is a major gateway of wind energy into the ocean[J]. Haiyang Xuebao,2021, 43(3):40–47 doi: 10.12284/hyxb2021039
Citation: Zhang Yu,Cui Chaoran,Yang Qian, et al. North part of the North Pacific is a major gateway of wind energy into the ocean[J]. Haiyang Xuebao,2021, 43(3):40–47 doi: 10.12284/hyxb2021039

北太平洋北部的风能输入门户

doi: 10.12284/hyxb2021039
基金项目: 国家自然科学基金(41676021);国家重点基础研究发展计划(2013CB956201);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0306)
详细信息
    作者简介:

    张宇(1992-),男,安徽省马鞍山市人,博士研究生,主要从事海洋能量学、海洋带状流研究。E-mail:kyuzhang@163.com

    通讯作者:

    管玉平,研究员,主要从事大洋环流与气候变化、海洋能量学、海洋带状流、海洋涡旋、台风研究。E-mail:guan@scsio.ac.cn

  • 中图分类号: P732.1

North part of the North Pacific is a major gateway of wind energy into the ocean

  • 摘要: 风不仅驱动了上层海洋的环流,也是深层海洋运动的主要能量来源。本文主要研究了北太平洋北部的风能输入的季节性分布特征和年际变化趋势,包括风向表面波、表层地转流和表层非地转流的能量输入。基于SODA3数据的结果表明,风能输入门户随季节变化显著,其中黑潮延伸区是冬季门户,副极地流涡是春、秋季门户,大洋东边界则是夏季门户,能量输入强度逐次递减。21世纪以来,秋冬风能输入明显减弱,春季增加,夏季无显著变化。就变化趋势的空间分布而言,向表面波的能量输入由风场主导,而向表层地转流和非地转流的能量输入则由流场主导。这些机械能输入结果对进一步认识该海域的动力机制有重要意义。
  • 图  1  风应力(a−d)及其大小变化趋势(e−h)的季节性空间分布

    Fig.  1  Seasonal spatial distributions of wind stress (a−d) and their trends (e−h)

    图  2  表层流流速(a−d)及其流速变化趋势(e−h)的季节性空间分布

    Fig.  2  Seasonal spatial distributions of surface currents velocity (a−d) and their trends (e−h)

    图  3  风向表面波输入的能量(a−d)及其变化趋势(e−h)的季节性空间分布

    黑色线框为人为定义的风能输入门户区域

    Fig.  3  Seasonal spatial distributions of wind energy input to surface wave (a−d) and their trends (e−h)

    Black boxes show the wind energy input gateways

    图  4  风向表层地转流(a−d)和表层非地转流(e−h)能量输入的季节性空间分布

    Fig.  4  Seasonal spatial distributions of wind energy input to surface geostrophic current (a−d)and ageostrophic current (e−h)

    图  5  风向表层地转流(a−d)和表层非地转流(e−h)的能量输入的变化趋势

    Fig.  5  Trends of the wind energy input to surface geostrophic current (a−d) and ageostrophic current (e−h)

    图  6  2000−2016年各季节门户区域内风向表面波(a)、表层地转流(b)、表层非地转流(c)能量输入的年际变化及该时间段内PDO指数和ENSO指数的变化趋势(d)

    Fig.  6  Wind energy input to surface wave (a), surface geostrophic currents (b), surface ageostrophic currents (c) of each seasonal gateway in 2000 to 2016, and the PDO index and ENSO index (d)

    表  1  各个季节门户内风能输入与PDO指数以及ENSO指数的相关系数

    Tab.  1  Correlation between wind energy input and PDO index and ENSO index in each seasonal gateway

    区域指数表面波表层地转流表层非地转流
    春季门户PDO0.290.260.42
    ENSO0.130.050.21
    夏季门户PDO−0.35−0.46−0.39
    ENSO−0.33−0.44−0.38
    秋季门户PDO0.390.180.38
    ENSO0.24−0.070.21
    冬季门户PDO0.400.320.40
    ENSO0.150.140.14
    下载: 导出CSV
  • [1] Wunsch C, Ferrari R. Vertical mixing, energy, and the general circulation of the oceans[J]. Annual Review of Fluid Mechanics, 2004, 36: 281−314. doi: 10.1146/annurev.fluid.36.050802.122121
    [2] Wang Wei, Huang Rinxin. Wind energy input to the surface waves[J]. Journal of Physical Oceanography, 2004, 34(5): 1276−1280. doi: 10.1175/1520-0485(2004)034<1276:WEITTS>2.0.CO;2
    [3] Wang Wei, Huang Ruixin. Wind energy input to the ekman layer[J]. Journal of Physical Oceanography, 2004, 34(5): 1267−1275. doi: 10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2
    [4] Urakawa L S, Hasumi H. The energetics of global thermohaline circulation and its wind enhancement[J]. Journal of Physical Oceanography, 2009, 39(7): 1715−1728. doi: 10.1175/2009JPO4073.1
    [5] Munk W, Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1977−2010. doi: 10.1016/S0967-0637(98)00070-3
    [6] Watanabe M, Hibiya T. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer[J]. Geophysical Research Letters, 2002, 29(8): 64-1−64-3.
    [7] Huang Ruixin, Wang Wei, Liu Lingling. Decadal variability of wind-energy input to the world ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53(1/2): 31−41.
    [8] Teng Yong, Yang Yongzeng, Qiao Fangli, et al. Energy budget of surface waves in the global ocean[J]. Acta Oceanologica Sinica, 2009, 28(3): 5−10.
    [9] Liu Guoqiang, He Yijun, Zhang Yuanzhi, et al. Estimation of global wind energy input to the surface waves based on the scatterometer[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1017−1020. doi: 10.1109/LGRS.2012.2189194
    [10] Brown J N, Fedorov A V. Mean energy balance in the tropical Pacific Ocean[J]. Journal of Marine Research, 2008, 66(1): 1−23. doi: 10.1357/002224008784815757
    [11] Von Storch J S, Sasaki H, Marotzke J. Wind-generated power input to the deep ocean: an estimate using a 1/10° general circulation model[J]. Journal of Physical Oceanography, 2007, 37(3): 657−672. doi: 10.1175/JPO3001.1
    [12] Wunsch C. The work done by the wind on the oceanic general circulation[J]. Journal of Physical Oceanography, 1998, 28(11): 2332−2340. doi: 10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2
    [13] Duhaut T H A, Straub D N. Wind stress dependence on ocean surface velocity: implications for mechanical energy input to ocean circulation[J]. Journal of Physical Oceanography, 2006, 36(2): 202−211. doi: 10.1175/JPO2842.1
    [14] Zhai Xiaoming, Wunsch C. On the variability of wind power input to the oceans with a focus on the subpolar north Atlantic[J]. Journal of Climate, 2013, 26(11): 3892−3903. doi: 10.1175/JCLI-D-12-00472.1
    [15] Wu Kejian, Liu Bin. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current[J]. Journal of Geophysical Research: Ocearns, 2008, 113(C10): C10002. doi: 10.1029/2007JC004579
    [16] Kilbourne B F, Girton J B. Quantifying high-frequency wind energy flux into near-inertial motions in the Southeast Pacific[J]. Journal of Physical Oceanography, 2015, 45(2): 369−386. doi: 10.1175/JPO-D-14-0076.1
    [17] Zhai Xiaoming, Greatbatch R J. Wind work in a model of the northwest Atlantic Ocean[J]. Geophysical Research Letters, 2007, 34(4): L04606.
    [18] Zhu Yaohua, Fang Guohong, Wei Zexun, et al. Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2. 4[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3090−3105. doi: 10.1002/2015JC011443
    [19] Carton J A, Giese B S, Grodsky S A. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis[J]. Journal of Geophysical Research, 2005, 110(C9): C09006.
    [20] Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [21] Giese B S, Ray S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02024.
    [22] Yang Haiyuan, Wu Lixin. Trends of upper-layer circulation in the South China Sea during 1959–2008[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08037.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  89
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 修回日期:  2020-04-04
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回