留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降解聚乙烯塑料芽孢杆菌LC-2的分离鉴定及降解特性研究

江婷婷 丁慧平 冯丽娟 张大海 李苓 刘彦东 李先国

江婷婷,丁慧平,冯丽娟,等. 降解聚乙烯塑料芽孢杆菌LC-2的分离鉴定及降解特性研究[J]. 海洋学报,2021,43(2):9–15 doi: 10.12284/hyxb2021036
引用本文: 江婷婷,丁慧平,冯丽娟,等. 降解聚乙烯塑料芽孢杆菌LC-2的分离鉴定及降解特性研究[J]. 海洋学报,2021,43(2):9–15 doi: 10.12284/hyxb2021036
Jiang Tingting,Ding Huiping,Feng Lijuan, et al. Isolation, identification and polyethylene-degrading characteristics of Bacillus LC-2[J]. Haiyang Xuebao,2021, 43(2):9–15 doi: 10.12284/hyxb2021036
Citation: Jiang Tingting,Ding Huiping,Feng Lijuan, et al. Isolation, identification and polyethylene-degrading characteristics of Bacillus LC-2[J]. Haiyang Xuebao,2021, 43(2):9–15 doi: 10.12284/hyxb2021036

降解聚乙烯塑料芽孢杆菌LC-2的分离鉴定及降解特性研究

doi: 10.12284/hyxb2021036
基金项目: 中央高校基本科研业务费专项(201861015)。
详细信息
    作者简介:

    江婷婷(1995-),女,安徽省马鞍山市人,主要研究方向为环境分析化学。E-mail:1871600481@qq.com

    通讯作者:

    李先国(1965-),男,教授,主要研究方向为海洋有机地球化学及现代有机污染物与生物地球化学。E-mail:lixg@ouc.edu.cn

  • 中图分类号: X172

Isolation, identification and polyethylene-degrading characteristics of Bacillus LC-2

  • 摘要: 塑料在环境中不断地积累,逐渐破碎成为尺寸小于5 mm的微塑料,对环境和人类健康构成严重威胁。本研究从青岛李村河口采集的塑料薄膜上分离出一株能够降解聚乙烯(PE)的细菌,命名为LC-2,通过分子生物学结合形态学和生理生化特征分析将其鉴定为芽孢杆菌(Bacillus aquimaris)。在以PE为唯一碳源的液体培养基中,接种该细菌培养28 d后,通过扫描电镜、接触角测定、热重分析以及傅里叶变换红外光谱等手段分析表明,PE的失重率在9%左右,表面形貌发生变化,疏水性变小且表面发生氧化,产生−C=O官能团,这些证据足以证明LC-2可以降解PE。
  • 图  1  基于16S rRNA基因序列构建的菌株LC-2系统发育树

    只展示自展值大于50%的节点数据,邻接法重复取样1 000次

    Fig.  1  Neighbor-Joining tree of strain LC-2 constructed based on 16S rRNA gene sequence

    Numbers at nodes indicate bootstrap values (>50%) based on a neighbor-joining analysis of 1 000 resampled datasets

    图  2  PE塑料的失重率曲线

    Fig.  2  Weight loss curve of PE plastic

    图  3  培养基中游离的细菌数

    Fig.  3  The number of free state bacteria in the medium

    图  4  PE塑料的扫描电镜照片

    a. 未接种LC-2的PE培养28 d后;b−d. 接种LC-2的PE 培养28 d后,显示出明显的孔洞(b)、裂痕(c)和凹坑(d)

    Fig.  4  Scanning electron microscopy photographs of PE plastic

    a. After 28 days in culture medium without LC-2 inoculated; b−d. after 28 days in culture medium with LC-2 inoculated showing the appearance of holes (b), cracks (c) and pits (d)

    图  5  PE塑料的水接触角图片

    a. 对照组28 d后;b. 实验组28 d后

    Fig.  5  The photographs of water contact angles of PE plastic

    a. Control group after 28 days; b. experimental group after 28 days

    图  6  PE塑料降解前后的红外光谱图

    Fig.  6  FTIR spectra of PE plastic before and after degradation

    图  7  PE塑料的热重曲线

    Fig.  7  Thermogravimetric curve of PE plastic

  • [1] Green D S, Boots B, Blockley D J, et al. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning[J]. Environmental Science & Technology, 2015, 49(9): 5380−5389.
    [2] Thompson R C, Moore C J, Vom Saal F S, et al. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2153−2166. doi: 10.1098/rstb.2009.0053
    [3] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782.
    [4] Xu Xiyuan, Wang Shuai, Gao Fenglei, et al. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China’s coastal seawaters[J]. Marine Pollution Bulletin, 2019, 145: 278−286. doi: 10.1016/j.marpolbul.2019.05.036
    [5] Mccormick A, Hoellein T J, Mason S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863−11871. doi: 10.1021/es503610r
    [6] Kalogerakis N, Karkanorachaki K, Kalogerakis G C, et al. Microplastics generation: onset of fragmentation of polyethylene films in marine environment mesocosms[J]. Frontiers in Marine Science, 2017, 4: 84.
    [7] Chang Xiaoru, Xue Yuying, Li Jiangyan, et al. Potential health impact of environmental micro- and nanoplastics pollution[J]. Journal of Applied Toxicology, 2020, 40(1): 4−15. doi: 10.1002/jat.3915
    [8] Ma Jie, Zhao Jinghua, Zhu Zhilin, et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride[J]. Environmental Pollution, 2019, 254: 113104.
    [9] Qiao Ruxia, Deng Yongfeng, Zhang Shenghu, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236: 124334. doi: 10.1016/j.chemosphere.2019.07.065
    [10] Tourinho P S, Koci V, Loureiro S, et al. Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation[J]. Environmental Pollution, 2019, 252: 1246−1256.
    [11] Camacho M, Herrera A, Gómez M, et al. Organic pollutants in marine plastic debris from Canary Islands beaches[J]. Science of the Total Environment, 2019, 662: 22−31. doi: 10.1016/j.scitotenv.2018.12.422
    [12] Shen Maocai, Song Biao, Zeng Guangming, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution?[J]. Environmental Pollution, 2020, 263: 114469.
    [13] Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis[J]. Journal of Applied Microbiology, 2005, 98(5): 1093−1100. doi: 10.1111/j.1365-2672.2005.02553.x
    [14] Sivan A. New perspectives in plastic biodegradation[J]. Current Opinion in Biotechnology, 2011, 22(3): 422−426. doi: 10.1016/j.copbio.2011.01.013
    [15] Raddadi N, Fava F. Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation[J]. Science of the Total Environment,, 2019, 679: 148−158. doi: 10.1016/j.scitotenv.2019.04.419
    [16] Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India[J]. Marine Pollution Bulletin, 2013, 77(1/2): 100−106. doi: 10.1016/j.marpolbul.2013.10.025
    [17] Yang Jun, Yang Yu, Wu Weimin, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776−13784. doi: 10.1021/es504038a
    [18] Paco A, Duarte K, Da Costa J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of the Total Environment, 2017, 586: 10−15. doi: 10.1016/j.scitotenv.2017.02.017
    [19] Zhang Junqing, Gao Danling, Li Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. doi: 10.1016/j.scitotenv.2019.135931
    [20] Lwanga E H, Thapa B, Yang Xiaomei, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753−757. doi: 10.1016/j.scitotenv.2017.12.144
    [21] Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527−533. doi: 10.1016/j.chemosphere.2019.01.159
    [22] Mehmood C T, Qazi I A, Hashmi I, et al. Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii[J]. International Biodeterioration & Biodegradation, 2016, 113: 276−286.
    [23] Gulmine J V, Janissek P R, Heise H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing, 2002, 21(5): 557−563. doi: 10.1016/S0142-9418(01)00124-6
    [24] Rajandas H, Parimannan S, Sathasivam K, et al. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation[J]. Polymer Testing, 2012, 31(8): 1094−1099. doi: 10.1016/j.polymertesting.2012.07.015
    [25] Pometto III A L, Lee B T, Johnson K E. Production of an extracellular polyethylene-degrading enzyme(s) by streptomyces species[J]. Applied and Environmental Microbiology, 1992, 58(2): 731−733. doi: 10.1128/AEM.58.2.731-733.1992
    [26] Fujisawa M, Hirai H, Nishida T. Degradation of polyethylene and Nylon-66 by the laccase-mediator system[J]. Journal of Polymers and the Environment, 2001, 9(3): 103−108. doi: 10.1023/A:1020472426516
    [27] Ren Liu, Men Li’na, Zhang Zhiwei, et al. Biodegradation of polyethylene byEnterobacter sp. D1 from the guts of wax moth Galleria mellonella[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1941.
    [28] 代军, 晏华, 郭骏骏, 等. 低密度聚乙烯热氧老化特性[J]. 塑料, 2016, 45(6): 54−58, 68.

    Dai Jun, Yan Hua, Guo Junjun, et al. Characterization of the degradation behavior of LDPE after artificial thermo-oxidative aging[J]. Plastics, 2016, 45(6): 54−58, 68.
  • 加载中
图(7)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  47
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-26
  • 网络出版日期:  2021-01-21
  • 刊出日期:  2021-03-02

目录

    /

    返回文章
    返回