留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厦门潮间带沉积物磷、铁和硫的时空分布及磷释放风险研究

潘峰 郭占荣 蔡宇 刘花台 王新红

潘峰,郭占荣,蔡宇,等. 厦门潮间带沉积物磷、铁和硫的时空分布及磷释放风险研究[J]. 海洋学报,2021,43(4):14–26 doi: 10.12284/hyxb2021030
引用本文: 潘峰,郭占荣,蔡宇,等. 厦门潮间带沉积物磷、铁和硫的时空分布及磷释放风险研究[J]. 海洋学报,2021,43(4):14–26 doi: 10.12284/hyxb2021030
Pan Feng,Guo Zhanrong,Cai Yu, et al. Spatio-temporal variation of phosphorus, iron and sulfur in intertidal sediments of Xiamen and associated release risk of phosphorus[J]. Haiyang Xuebao,2021, 43(4):14–26 doi: 10.12284/hyxb2021030
Citation: Pan Feng,Guo Zhanrong,Cai Yu, et al. Spatio-temporal variation of phosphorus, iron and sulfur in intertidal sediments of Xiamen and associated release risk of phosphorus[J]. Haiyang Xuebao,2021, 43(4):14–26 doi: 10.12284/hyxb2021030

厦门潮间带沉积物磷、铁和硫的时空分布及磷释放风险研究

doi: 10.12284/hyxb2021030
基金项目: 国家自然科学基金(41372242,41672226);中国博士后科学基金(2020M682085)。
详细信息
    作者简介:

    潘峰(1990—),男,山东省乳山市人,主要研究方向为河口海岸环境地球化学。E-mail:fengpan@xmu.edu.cn

    通讯作者:

    郭占荣,男,教授,主要从事海岸带水文地质学和海洋地质学的教学和研究。E-mail:gzr@xmu.edu.cn

  • 中图分类号: P736.4

Spatio-temporal variation of phosphorus, iron and sulfur in intertidal sediments of Xiamen and associated release risk of phosphorus

  • 摘要: 为了解潮间带沉积物中铁和硫的氧化还原过程以及上覆水缺氧等对磷再活化和释放的影响,选择厦门翔安海岸带,应用原位、高分辨采样技术,对沉积物、孔隙水以及上覆水进行为期1 a的连续采样和监测。结果表明:上覆海水缺氧和磷含量超标较为严重,二者在多数月份分别低于2 mg/L和高于0.06 mg/L;在垂向剖面上,孔隙水中溶解活性磷含量同溶解铁含量变化规律一致,而薄膜扩散梯度技术有效态磷和有效态硫含量在局部硫高值区分布一致,表明磷的钝化和再活化主要受控于铁,局部受控于硫的氧化还原过程;在季度变化上,孔隙水中溶解活性磷同上覆水中溶解活性磷含量比较一致,归因于缺氧的沉积环境有利于溶解活性磷的跨界面交换,而多种环境因素的叠加,影响着溶解活性磷和膜扩散梯度技术有效态磷的时空变化;表层孔隙水中磷含量梯度不显著,即磷的释放风险不大,但环境因素的变化极易触发内源磷的释放。
  • 图  1  研究区域位置

    Fig.  1  The station of the study area

    图  2  溶解铁和SRP的含量−深度剖面

    **代表在0.01显著性水平上

    Fig.  2  Depth profiles of soluble Fe and SRP contents

    ** representing significance at 0.01 level

    图  3  各个月份垂向剖面中溶解铁、SRP、DGT有效态硫和磷含量的箱型图,以及研究区上覆水SRP含量、DO浓度和表层沉积物TOC含量的点线图

    Fig.  3  Box-plot of soluble Fe, SRP, DGT-labile S and DGT-labile P in vertical profile contents, and point plot of SRP content and DO concentration in the overlying water of the study area and TOC content in the surface sediments of each month

    图  4  DGT有效态硫的二维分布

    Fig.  4  2D distributions of the DGT-labile S

    图  5  DGT有效态磷的二维分布

    Fig.  5  2D distributions of the DGT-labile P

    图  6  DGT有效态硫和磷在局部的对比

    Fig.  6  Comparison between DGT-labile S and DGT-labile P in local

    图  7  各个月份(剖面)DGT有效态硫和磷的线性相关

    **代表在0.01显著性水平上

    Fig.  7  Linear correlations between DGT-labile S and DGT-labile P in each month (profile)

    **representing significance at 0.01 level

    表  1  上覆水基本理化特征

    Tab.  1  Basic physicochemical characteristics of the overlying water

    时间温度/℃盐度溶解氧浓度/(mg·L−1)pHSRP含量/(mg·L−1)R
    2018年5月33.632.651.658.010.1312.9
    2018年6月23.429.661.348.160.1343.0
    2018年7月30.130.430.887.990.0861.9
    2018年8月31.331.571.578.130.0771.7
    2018年9月31.730.001.298.080.0671.5
    2018年10月25.032.671.868.160.0621.4
    2018年11月22.432.042.357.630.0621.4
    2018年12月20.329.391.568.010.0491.1
    2019年1月15.430.562.857.780.0511.1
    2019年2月16.931.243.217.770.0521.2
    2019年3月18.133.122.578.060.0601.3
    2019年4月24.630.891.688.110.0581.3
    注:R为上覆水SRP含量与海水水质标准(GB 3097−1997)第四类水质活性磷酸盐含量(0.045 mg/L)的比值。
    下载: 导出CSV

    表  2  表层沉积物(0~10 cm)基本理化特征

    Tab.  2  Basic physicochemical characteristics of the surface sediments (0 cm to 10 cm)

    时间ASC-Fe含量/(g·kg−1)ASC-P含量/(mg·kg−1)TOC含量/%TS含量/(g·kg−1)碳氮比砂含量/%粉砂含量/%黏土含量/%
    2018年5月0.8421.30.511.669.537.8268.224.0
    2018年6月0.8320.90.551.719.431.6964.533.8
    2018年7月0.8822.70.542.4010.50.5970.828.6
    2018年8月0.2718.30.442.7910.04.8570.524.6
    2018年9月0.3021.00.391.7711.017.566.615.9
    2018年10月0.7921.90.541.329.772.0072.125.9
    2018年11月0.5414.20.621.509.358.0969.622.4
    2018年12月0.498.000.521.358.6613.268.918.0
    2019年1月0.689.000.601.328.7918.065.516.6
    2019年2月0.546.900.491.749.3521.874.63.60
    2019年3月0.737.600.641.188.2112.384.43.30
    2019年4月0.577.500.481.428.9914.181.54.40
    下载: 导出CSV
  • [1] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014−1015.
    [2] Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293.
    [3] Smith V H, Schindler D W. Eutrophication science: where do we go from here?[J]. Trends in Ecology & Evolution, 2009, 24(4): 201−207.
    [4] Rozan T F, Taillefert M, Trouwborst R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography, 2002, 47(5): 1346−1354.
    [5] Pan Feng, Guo Zhanrong, Cai Yu, et al. Cyclical patterns and (im)mobilization mechanisms of phosphorus in sediments from a small creek estuary: evidence from in situ monthly sampling and indoor experiments[J]. Water Research, 2020, 171: 115479.
    [6] Pan Feng, Guo Zhanrong, Cai Yu, et al. Kinetic exchange of remobilized phosphorus related to phosphorus-iron-sulfur biogeochemical coupling in coastal sediment[J]. Water Resources Research, 2019, 55(12): 10494−10517.
    [7] Pan Feng, Liu Huatai, Guo Zhanrong, et al. Effects of tide and season changes on the iron-sulfur-phosphorus biogeochemistry in sediment porewater of a mangrove coast[J]. Journal of Hydrology, 2019, 568: 686−702.
    [8] Newton A, Icely J. Land ocean interactions in the Coastal Zone, LOICZ: lessons from banda aceh, atlantis, and canute[J]. Estuarine, Coastal and Shelf Science, 2008, 77(2): 181−184.
    [9] Depew D C, Koehler G, Hiriart-Baer V. Phosphorus dynamics and availability in the nearshore of eastern lake erie: insights from oxygen isotope ratios of phosphate[J]. Frontiers in Marine Science, 2018, 5: 215.
    [10] Markovic S, Liang Anqi, Watson S B, et al. Biogeochemical mechanisms controlling phosphorus diagenesis and internal loading in a remediated hard water eutrophic embayment[J]. Chemical Geology, 2019, 514: 122−137.
    [11] Ma Weiwei, Zhu Maoxu, Yang Guipeng, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410.
    [12] Sun Qiyao, Sheng Yanqing, Yang Jian, et al. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China[J]. Environmental Pollution, 2016, 219: 588−595.
    [13] Hermans M, Lenstra W K, Helmond N V, et al. Impact of natural re-oxygenation on the sediment dynamics of manganese, iron and phosphorus in a euxinic Baltic Sea basin[J]. Geochimica et Cosmochimica Acta, 2019, 246: 174−196.
    [14] Roy E D, Nguyen N T, White J R. Changes in estuarine sediment phosphorus fractions during a large-scale Mississippi River diversion[J]. Science of the Total Environment, 2017, 609: 1248−1257.
    [15] Pan Feng, Liu Huatai, Guo Zhanrong, et al. Geochemical behavior of phosphorus and iron in porewater in a mangrove tidal flat and associated phosphorus input into the ocean[J]. Continental Shelf Research, 2017, 150(1): 65−75.
    [16] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883.
    [17] 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355−364.

    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: an overview[J]. Advances in Earth Science, 2011, 26(4): 355−364.
    [18] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441−454.
    [19] Kraal P, Burton E D, Rose A L, et al. Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology, 2015, 392: 19−31.
    [20] Ding Shiming, Chen Musong, Gong Mengdan, et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms[J]. Science of the Total Environment, 2018, 625: 872−884.
    [21] Chen Musong, Ding Shiming, Chen Xiang, et al. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments[J]. Water Research, 2018, 133: 153−164.
    [22] Han Chao, Ding Shiming, Yao Lei, et al. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition[J]. Journal of Hazardous Materials, 2015, 300: 329−337.
    [23] Han Chaonan, Qin Yanwen, Zheng Binghui, et al. Geochemistry of phosphorus release along transect of sediments from a tributary backwater zone in the Three Gorges Reservoir[J]. Science of the Total Environment, 2020, 722: 136964.
    [24] Rong Nan, Lu Wenzhou, Zhang Chaoyu, et al. In situ high-resolution measurement of phosphorus, iron and sulfur by diffusive gradients in thin films in sediments of black-odorous rivers in the Pearl River Delta region, South China[J]. Environmental Research, 2020, 189: 109918.
    [25] 潘峰, 郭占荣, 刘花台, 等. 潮滩沉积物−水界面磷、铁的高分辨率分布特征及生物地球化学行为[J]. 地球科学, 2018, 43(11): 4109−4119.

    Pan Feng, Guo Zhanrong, Liu Huatai, et al. High-resolution distribution and biogeochemical behavior of phosphorus and iron at sediment-water interface of tidal flat[J]. Earth Science, 2018, 43(11): 4109−4119.
    [26] Wang Yan, Ding Shiming, Wang Dan, et al. Static layer: a key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite (Phoslock®)[J]. Chemical Engineering Journal, 2017, 325: 49−58.
    [27] Chen Musong, Cui Jingzhen, Lin Juan, et al. Successful control of internal phosphorus loading after sediment dredging for 6 years: a field assessment using high-resolution sampling techniques[J]. Science of the Total Environment, 2018, 616−617: 927−936.
    [28] 欧阳玉蓉, 王翠, 李青生, 等. 厦门湾海域营养盐时空分布与富营养化状况分析[J]. 福建农业学报, 2014, 29(1): 88−93. doi: 10.3969/j.issn.1008-0384.2014.01.018

    Ouyang Yurong, Wang Cui, Li Qingsheng, et al. Analysis of the space-time distribution of nutrients and the degree of eutrophication in Xiamen Bay[J]. Fujian Journal of Agricultural Sciences, 2014, 29(1): 88−93. doi: 10.3969/j.issn.1008-0384.2014.01.018
    [29] Lin Peng, Guo Laodong, Chen Min, et al. Distribution, partitioning and mixing behavior of phosphorus species in the Jiulong River estuary[J]. Marine Chemistry, 2013, 157: 93−105.
    [30] Yang Caiyun, Li Yi, Zhou Yanyan, et al. Bacterial community dynamics during a bloom caused by Akashiwo sanguinea in the Xiamen sea area, China[J]. Harmful Algae, 2012, 20: 132−141.
    [31] Yu Liying, Zhang Yaqun, Li Meizhen, et al. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom[J]. Science of the Total Environment, 2020, 699: 134323.
    [32] Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels[J]. Nature, 1994, 367(6463): 546−548.
    [33] Teasdale P R, Batley G E, Apte S C, et al. Pore water sampling with sediment peepers[J]. Trac Trends in Analytical Chemistry, 1995, 14(6): 250−256.
    [34] Xu Di, Wu Wei, Ding Shiming, et al. A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments[J]. Science of the Total Environment, 2012, 421−422: 245−252.
    [35] Zhang H, Davison W, Miller S, et al. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4181−4192.
    [36] Laskov C, Herzog C, Lewandowski J, et al. Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments[J]. Limnology and Oceanography Methods, 2007, 5(1): 63−71.
    [37] Ding Shiming, Wang Yan, Xu Di, et al. Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films[J]. Environmental Science & Technology, 2013, 47(14): 7821−7829.
    [38] Ding Shiming, Sun Qin, Xu Di, et al. High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: the first observation of their simultaneous release in sediments[J]. Environmental Science & Technology, 2012, 46(15): 8297−8304.
    [39] Teasdale P R, Hayward S, Davison W. In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry[J]. Analytical Chemistry, 1999, 71(11): 2186−2191.
    [40] Wang Yan, Ding Shiming, Gong Mengdan, et al. Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions[J]. Analytica Chimica Acta, 2016, 945: 47−56.
    [41] Pan Feng, Liu Huatai, Guo Zhanrong, et al. Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: a case study in the Jiulong River Estuary, China[J]. Environmental Pollution, 2019, 255: 113134.
    [42] Pan Feng, Guo Zhanrong, Cai Yu, et al. High-resolution imaging of labile P & S in coastal sediment: insight into the kinetics of P mobilization associated with sulfate reduction[J]. Marine Chemistry, 2020, 225: 103851.
    [43] McManus J, Berelson W M, Coale K H, et al. Phosphorus regeneration in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(14): 2891−2907.
    [44] 刘思儒, 赵继东, 肖尚斌, 等. 洱海藻类水华高风险期沉积物氮磷释放通量时空变化[J]. 环境科学, 2020, 41(2): 734−742.

    Liu Siru, Zhao Jidong, Xiao Shangbin, et al. Spatio-temporal variation of release flux of sediment nitrogen and phosphorus in high-risk period of algal bloom in lake Erhai[J]. Environmental Science, 2020, 41(2): 734−742.
    [45] 郝文超, 王从锋, 杨正健, 等. 氧化还原循环过程中沉积物磷的形态及迁移转化规律[J]. 环境科学, 2019, 40(2): 640−648.

    Hao Wenchao, Wang Congfeng, Yang Zhengjian, et al. Speciation and transformation of phosphorus in sediments during the redox cycle[J]. Environmental Science, 2019, 40(2): 640−648.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  48
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-10-31
  • 网络出版日期:  2021-03-15
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回