[1] |
Tatsumi Y, Takahashi T. Operation of subduction factory and production of andesite[J]. Journal of Mineralogical and Petrological Sciences, 2006, 101(3): 145−153. doi: 10.2465/jmps.101.145
|
[2] |
倪怀玮, 张力, 郭璇. 水与地幔的部分熔融[J]. 中国科学: 地球科学, 2016, 46(3): 329-340.Ni Huaiwei, Zhang Li, Guo Xuan. Water and partial melting of Earth’s mantle[J]. Science China: Earth Sciences, 2016, 59(4): 720−730.
|
[3] |
Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: a review[J]. Lithos, 2013, 170−171: 208−223. doi: 10.1016/j.lithos.2013.02.016
|
[4] |
Peacock S A. Fluid processes in subduction zones[J]. Science, 1990, 248(4953): 329−337. doi: 10.1126/science.248.4953.329
|
[5] |
Plank T, Manning C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343−352. doi: 10.1038/s41586-019-1643-z
|
[6] |
Hwang H, Seoung D, Lee Y, et al. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle[J]. Nature Geoscience, 2017, 10(12): 947−953. doi: 10.1038/s41561-017-0008-1
|
[7] |
Okazaki K, Hirth G. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust[J]. Nature, 2016, 530(7588): 81−84. doi: 10.1038/nature16501
|
[8] |
Utada H, Koyama T, Obayashi M, et al. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry[J]. Earth and Planetary Science Letters, 2009, 281(3/4): 249−257.
|
[9] |
Yoshino T, Manthilake G, Matsuzaki T, et al. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite[J]. Nature, 2008, 451(7176): 326−329. doi: 10.1038/nature06427
|
[10] |
Dai Lidong, Karato S I. Electrical conductivity of wadsleyite at high temperatures and high pressures[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 277−283.
|
[11] |
Pearson D G, Brenker F E, Nestola F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014, 507(7491): 221−224. doi: 10.1038/nature13080
|
[12] |
Tschauner O, Huang S, Greenberg E, et al. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle[J]. Science, 2018, 359(6380): 1136−1139. doi: 10.1126/science.aao3030
|
[13] |
Wirth R, Vollmer C, Brenker F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil)[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 384−399.
|
[14] |
Ohtani E, Yuan Liang, Ohira I, et al. Fate of water transported into the deep mantle by slab subduction[J]. Journal of Asian Earth Sciences, 2018, 167: 2−10. doi: 10.1016/j.jseaes.2018.04.024
|
[15] |
Masuti S, Barbot S D, Karato S I, et al. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake[J]. Nature, 2016, 538(7625): 373−377. doi: 10.1038/nature19783
|
[16] |
Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123(4): 345−357. doi: 10.1007/s004100050161
|
[17] |
Inoue T, Weidner D J, Northrup P A, et al. Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4[J]. Earth and Planetary Science Letters, 1998, 160(1/2): 107−113.
|
[18] |
Bolfan-Casanova N, Keppler H, Rubie D C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite[J]. Geophysical Research Letters, 2003, 30(17): 1905.
|
[19] |
Litasov K, Ohtani E, Langenhorst F, et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 189−203.
|
[20] |
杨翠平, 金振民, 吴耀. 地幔转换带中的水及其地球动力学意义[J]. 地学前缘, 2010, 17(3): 114−126.Yang Cuiping, Jin Zhenmin, Wu Yao. Water in the mantle transition zone and its geodynamic implications[J]. Earth Science Frontiers, 2010, 17(3): 114−126.
|
[21] |
Bolfan-Casanova N. Water in the Earth’s mantle[J]. Mineralogical Magazine, 2005, 69(3): 229−257. doi: 10.1180/0026461056930248
|
[22] |
Litasov K, Ohtani E. Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa[J]. Physics of the Earth and Planetary Interiors, 2002, 134(1-2): 105−127. doi: 10.1016/S0031-9201(02)00152-8
|
[23] |
夏群科. 地幔中的水与重大地质现象和过程[J]. 自然杂志, 2017, 39(1): 1−4.Xia Qunke. Water in the mantle connects with important geological events and processes[J]. Chinese Journal of Nature, 2017, 39(1): 1−4.
|
[24] |
刘鑫. 西北太平洋俯冲带构造特征及其对弧前大地震成因的影响[D]. 青岛: 中国海洋大学, 2013.Liu Xin. Structural heterogeneity of Northwest-Pacific subduction zones and itsimplications for interplate megathrust earthquakes[D]. Qingdao: Ocean University of China, 2013.
|
[25] |
Wells R E, Blakely R J, Wech A G, et al. Cascadia subduction tremor muted by crustal faults[J]. Geology, 2017, 45(6): 515−518.
|
[26] |
Nakajima J, Uchida N. Repeated drainage from megathrusts during episodic slow slip[J]. Nature Geoscience, 2018, 11(5): 351−356. doi: 10.1038/s41561-018-0090-z
|
[27] |
Green II H W. The mechanism of deep earthquakes[J]. Eos, Transactions American Geophysical Union, 1993, 74(2): 23.
|
[28] |
邵同宾, 宋茂双, 嵇少丞, 等. 水对名义无水矿物变形的影响[J]. 大地构造与成矿学, 2013, 37(1): 138−163. doi: 10.3969/j.issn.1001-1552.2013.01.015Shao Tongbin, Song Maoshuang, Ji Shaocheng, et al. Influence of water on deformation of NAMs: a review[J]. Geotectonica et Metallogenia, 2013, 37(1): 138−163. doi: 10.3969/j.issn.1001-1552.2013.01.015
|
[29] |
Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2030.
|
[30] |
Yamasaki T, Seno T. Double seismic zone and dehydration embrittlement of the subducting slab[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2212.
|
[31] |
Peacock S M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J]. Geology, 2001, 29(4): 299−302.
|
[32] |
Davies J H. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism[J]. Nature, 1999, 398(6723): 142−145. doi: 10.1038/18202
|
[33] |
Zhang Junfeng, Green II H W, Bozhilov K, et al. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust[J]. Nature, 2004, 428(6983): 633−636.
|
[34] |
Barcheck C G, Wiens D A, van Keken P E, et al. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs[J]. Earth and Planetary Science Letters, 2012, 349–350: 153−160.
|
[35] |
Bebout G E. Metamorphic chemical geodynamics of subduction zones[J]. Earth and Planetary Science Letters, 2007, 260(3/4): 373−393.
|
[36] |
Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63.
|
[37] |
Michael P J, Chase R L. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation[J]. Contributions to Mineralogy and Petrology, 1987, 96(2): 245−263.
|
[38] |
Zimmer M M, Plank T, Hauri E H, et al. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index[J]. Journal of Petrology, 2010, 51(12): 2411−2444. doi: 10.1093/petrology/egq062
|
[39] |
Desbruyères D, Alayse-Danet A M, Ohta S. Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food web[J]. Marine Geology, 1994, 116(1/2): 227−242.
|
[40] |
Desbruyères D, Hashimoto J, Fabri M C. Composition and biogeography of hydrothermal vent communities in western pacific back-arc basins[J]. Geophysical Monograph, 2006, 166: 215−234.
|
[41] |
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
|
[42] |
Barriga F, Fouquet Y, Almeida A, et al. Discovery of the Saldanha hydrothermal field on the famous segment of the MAR (36°30'N)[J]. AGU Fall Meeting, Eos Transactions, 1998, 79(45): F67.
|
[43] |
Schroeder T, John B, Frost B R. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges[J]. Geology, 2002, 30(4): 367−370. doi: 10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2
|
[44] |
Rona P A. Pattern of hydrothermal mineral deposition: Mid-Atlantic Ridge crest at latitude 26°N[J]. Marine Geology, 1976, 21(4): 59−66. doi: 10.1016/0025-3227(76)90009-8
|
[45] |
Franklin J M, Sangster D F, Lydon J W. Volcanic-associated massive sulfide deposits[M]//Skinner B J. Economic Geology Publishing Company Seventy-Fifth Anniversary Volume. McLean, VA: GeoScienceWorld, 1981: 485–627.
|
[46] |
Yang Kaihui, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383(6599): 420−423. doi: 10.1038/383420a0
|
[47] |
Kim J, Lee I, Lee K Y. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, Western Pacific: evaluation of magmatic contribution to hydrothermal system[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B12): 159−163. doi: 10.1029/2003JB002912
|
[48] |
王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3): 835−850.Wang Shujie, Zhai Shikui, Yu Zenghui, et al. Reflections on model of modern seafloor hydrothermal system[J]. Earth Science, 2018, 43(3): 835−850.
|
[49] |
Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1−3-38.
|
[50] |
Liu Xingcheng, Matsukage K N, Nishihara Y, et al. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust[J]. American Mineralogist, 2019, 104(1): 64−72. doi: 10.2138/am-2019-6559
|
[51] |
Faccenda M, Gerya T V, Burlini L. Deep slab hydration induced by bending-related variations in tectonic pressure[J]. Nature Geoscience, 2009, 2(11): 790−793. doi: 10.1038/ngeo656
|
[52] |
Schmandt B, Jacobsen S D, Becker T W, et al. Dehydration melting at the top of the lower mantle[J]. Science, 2014, 344(6189): 1265−1268. doi: 10.1126/science.1253358
|
[53] |
Tonegawa T, Hirahara K, Shibutani T, et al. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 346−354.
|
[54] |
Kerrick D M. Present and past nonanthropogenic CO2 degassing from the solid earth[J]. Reviews of Geophysics, 2001, 39(4): 565−585. doi: 10.1029/2001RG000105
|
[55] |
Pan Ding, Spanu L, Harrison B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646−6650. doi: 10.1073/pnas.1221581110
|
[56] |
Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355−360.
|
[57] |
Grassi D, Schmidt M W. The melting of carbonated pelites from 70 to 700 km depth[J]. Journal of Petrology, 2011, 52(4): 765−789. doi: 10.1093/petrology/egr002
|
[58] |
Martin L A J, Hermann J. Experimental phase relations in altered oceanic crust: implications for carbon recycling at subduction zones[J]. Journal of Petrology, 2018, 59(2): 299−320.
|
[59] |
Behn M D, Kelemen P B, Hirth G, et al. Diapirs as the source of the sediment signature in arc lavas[J]. Nature Geoscience, 2011, 4(9): 641−646. doi: 10.1038/ngeo1214
|
[60] |
Kelemen P B, Manning C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997−E4006.
|
[61] |
Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519−527. doi: 10.1038/370519a0
|
[62] |
van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
|
[63] |
Magni V, Faccenna C, van Hunen J, et al. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models[J]. Geology, 2014, 42(6): 511−514. doi: 10.1130/G35446.1
|
[64] |
郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4): 651−682.Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones[J]. Science China: Earth Sciences, 2016, 59(4): 651−682.
|
[65] |
Poli S, Schmidt M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2003, 30: 207−235.
|
[66] |
Schmidt M W, Poli S. Devolatilization during subduction[J]. Treatise on Geochemistry, 2014, 4: 669−701.
|
[67] |
Zheng Yongfei. Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks[J]. Journal of the Geological Society, 2009, 166(4): 763−782.
|
[68] |
Zheng Yongfei, Xia Qiongxia, Chen Renxu, et al. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision[J]. Earth-Science Reviews, 2011, 107(3/4): 342−374.
|
[69] |
刘巍, 杜建国, 白利平. 浅谈超临界流体在地震孕育过程中的作用[J]. 地震地质, 2000, 22(4): 439−444. doi: 10.3969/j.issn.0253-4967.2000.04.013Liu Wei, Du Jianguo, Bai Liping. A review on the role of supercritical fluids earthquake generation[J]. Seismology and Geology, 2000, 22(4): 439−444. doi: 10.3969/j.issn.0253-4967.2000.04.013
|
[70] |
Audétat A, Keppler H. Viscosity of fluids in subduction zones[J]. Science, 2004, 303(5657): 513−516.
|
[71] |
Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth[J]. Nature, 2005, 437(7059): 724−727.
|
[72] |
Rapp J F, Klemme S, Butler I B, et al. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation[J]. Geology, 2010, 38(4): 323−326. doi: 10.1130/G30753.1
|
[73] |
Hermann J, Zheng Yongfei, Rubatto D. Deep fluids in subducted continental crust[J]. Elements, 2013, 9(4): 281−287. doi: 10.2113/gselements.9.4.281
|
[74] |
Hack A C, Thompson A B. Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes[J]. Journal of Petrology, 2011, 52(7/8): 1333−1362.
|
[75] |
Pirard C, Hermann J. Focused fluid transfer through the mantle above subduction zones[J]. Geology, 2015, 43(10): 915−918.
|
[76] |
Till C B, Grove T L, Withers A C. The beginnings of hydrous mantle wedge melting[J]. Contributions to Mineralogy and Petrology, 2012, 163(4): 669−688.
|
[77] |
Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07006.
|
[78] |
Peate D W, Pearce J A. Causes of spatial compositional variations in Mariana arc lavas: trace element evidence[J]. Island Arc, 1998, 7(3): 479−495.
|
[79] |
宗统, 翟世奎, 于增慧. 冲绳海槽岩浆作用的区域性差异[J]. 地球科学, 2016, 41(6): 1031−1040.Zong Tong, Zhai Shikui, Yu Zenghui. Regional differences of magmatism in the Okinawa Trough[J]. Earth Science, 2016, 41(6): 1031−1040.
|
[80] |
Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern Manus Basin[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542−1552.
|
[81] |
John T, Scambelluri M, Frische M, et al. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 65−76.
|
[82] |
Gill J B, Morris J D, Johnson R W. Timescale for producing the geochemical signature of island arc magmas: U-Th-Po and Be-B systematics in recent Papua New Guinea lavas[J]. Geochimica et Cosmochimica Acta, 1993, 57(17): 4269−4283.
|
[83] |
Dreyer B M, Morris J D, Gill J B. Incorporation of subducted slab-derived sediment and fluid in arc magmas: B-Be-10Be-εNd systematics of the Kurile convergent margin, Russia[J]. Journal of Petrology, 2010, 51(8): 1761−1782.
|
[84] |
Shimaoka A, Imamura M, Kaneoka I. Beryllium isotopic systematics in island arc volcanic rocks from northeast Japan: implications for the incorporation of oceanic sediments into island arc magmas[J]. Chemical Geology, 2016, 443: 158−172.
|
[85] |
Tanimizu M. Geophysical determination of the 138La β- decay constant[J]. Physical Review C, 2000, 62(1): 017601.
|
[86] |
Bonnand P, Israel C, Boyet M, et al. Radiogenic and stable Ce isotope measurements by thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(3): 504−516.
|
[87] |
Bellot N, Boyet M, Doucelance R, et al. Ce isotope systematics of island arc lavas from the Lesser Antilles[J]. Geochimica et Cosmochimica Acta, 2015, 168: 261−279.
|
[88] |
Bellot N, Boyet M, Doucelance R, et al. Origin of negative cerium anomalies in subduction-related volcanic samples: constraints from Ce and Nd isotopes[J]. Chemical Geology, 2018, 500: 46−63.
|
[89] |
Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids[J]. Nature, 1996, 380(6571): 237−240.
|
[90] |
Blundy J, Wood B. Mineral-melt partitioning of uranium, thorium and their daughters[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 59−123.
|
[91] |
Hawkesworth C J, Turner S P, McDermott F, et al. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust[J]. Science, 1997, 276(5312): 551−555.
|
[92] |
Avanzinelli R, Prytulak J, Skora S, et al. Combined 238U-230Th and 235U-231Pa constraints on the transport of slab-derived material beneath the Mariana Islands[J]. Geochimica et Cosmochimica Acta, 2012, 92: 308−328.
|
[93] |
黄方, 冷伟. 俯冲速率对岛弧岩浆岩铀系不平衡的控制[C]//中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京: 中国矿物岩石地球化学学会, 2013.Huang Fang, Leng Wei. The control of subduction rate on U-Series imbalance of island arc magmatic rocks[C]//Abstracts of Papers for the 14th Annual Conference of Chinese Society for Mineralogy Petrology and Geochemistry. Nanjing: Chinese Society of Mineral Petrogeochemistry, 2013.
|
[94] |
黄方, 张鞠琳. 岩浆演化对岛弧岩浆岩的铀系不平衡的影响[J]. 矿物岩石地球化学通报, 2013, 32(2): 204−211. doi: 10.3969/j.issn.1007-2802.2013.02.006Huang Fang, Zhang Julin. Effect of magma differentiation on u-series disequilibria in arc lavas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 204−211. doi: 10.3969/j.issn.1007-2802.2013.02.006
|
[95] |
Ryan J G, Langmuir C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1727−1741.
|
[96] |
Elliott T, Jeffcoate A, Kasemann S. Li isotopic evidence for subduction induced mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 2006, 70(18S): A159.
|
[97] |
Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907−910.
|
[98] |
刘海洋. 俯冲带变质作用与岩浆过程中的锂同位素地球化学[D]. 合肥: 中国科学技术大学, 2018.Liu Haiyang. Lithium isotope geochemistry in subduction zone metamorphism and magmatic process[D]. Hefei: University of Science and Technology of China, 2018.
|
[99] |
Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1/2): 145−154.
|
[100] |
Brooker R A, James R H, Blundy J D. Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle[J]. Chemical Geology, 2004, 212(1/2): 179−204.
|
[101] |
Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1/2): 59−79.
|
[102] |
Chan L H, Leeman W P, Plank T. Lithium isotopic composition of marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6): Q06005.
|
[103] |
Moriguti T, Shibata T, Nakamura E. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition[J]. Chemical Geology, 2004, 212(1/2): 81−100.
|
[104] |
Agostini S, Ryan J G, Tonarini S, et al. Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 139−147.
|
[105] |
Guo Kun, Zhai Shikui, Yu Zenghui, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: implications for the influence of subduction components and the contamination of crustal materials[J]. Journal of Marine Systems, 2018, 180: 140−151. doi: 10.1016/j.jmarsys.2016.11.009
|
[106] |
Marschall H R, von Strandmann P A E P, Seitz H M, et al. The lithium isotopic composition of orogenic eclogites and deep subducted slabs[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 563−580.
|
[107] |
Wunder B, Meixner A, Romer R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112−120. doi: 10.1007/s00410-005-0049-0
|
[108] |
梁光明, 蒋佳俊, 靳佳冀, 等. 顽火辉石中Li同位素扩散与分馏[J]. 矿物学报, 2018, 38(1): 36−40.Liang Guangming, Jiang Jiajun, Jin Jiayi, et al. Theoretical study on lithium diffusion and fractionation in enstatite[J]. Acta Mineralogica Sinica, 2018, 38(1): 36−40.
|
[109] |
蒋佳俊, 梁光明, 靳佳冀, 等. Li同位素在斜顽辉石、镁铝榴石及镁铝尖晶石晶格内扩散与分馏的理论计算研究[J]. 岩石学报, 2018, 34(9): 2811−2818.Jiang Jiajun, Liang Guangming, Jin Jiaji, et al. Theoretical study of lithium diffusion and fractionation in the lattice of clinoenstatite, pyrope and spinel[J]. Acta Petrologica Sinica, 2018, 34(9): 2811−2818.
|
[110] |
蒋少涌, 于际民, 凌洪飞, 等. 壳−幔演化和板块俯冲作用过程中的硼同位素示踪[J]. 地学前缘, 2000, 7(2): 391−399.Jiang Shaoyong, Yu Jimin, Ling Hongfei, et al. Boron isotope as a tracer in the study of crust-mantle evolution and subduction processes[J]. Earth Science Frontiers, 2000, 7(2): 391−399.
|
[111] |
Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215−217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2
|
[112] |
Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 273−282.
|
[113] |
Tonarini S, Leeman W P, Leat P T. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 275−284.
|
[114] |
Ishikawa T, Nakamura E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes[J]. Nature, 1994, 370(6486): 205−208. doi: 10.1038/370205a0
|
[115] |
Harvey J, Garrido C J, Savov I, et al. 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle[J]. Chemical Geology, 2014, 376: 20−30. doi: 10.1016/j.chemgeo.2014.03.015
|
[116] |
Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes[J]. Geological Journal, 2019, 54(1): 605−613. doi: 10.1002/gj.3209
|
[117] |
Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1−16.
|
[118] |
Scambelluri M, Pettke T, Cannaò E. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)[J]. Earth and Planetary Science Letters, 2015, 429: 45−59. doi: 10.1016/j.jpgl.2015.07.060
|
[119] |
Chen Yixiang, Schertl H P, Zheng Yongfei, et al. Mg-O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps[J]. Earth and Planetary Science Letters, 2016, 456: 157−167. doi: 10.1016/j.jpgl.2016.09.010
|
[120] |
Wang Shuijiong, Teng Fangzhen, Li Shuguang, et al. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes[J]. Lithos, 2017, 290–291: 94−103.
|
[121] |
Teng Fangzhen, Li Wangye, Ke Shan, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150−4166. doi: 10.1016/j.gca.2010.04.019
|
[122] |
Li Wangye, Teng Fangzhen, Xiao Yilin. Magnesium isotope record of fluid metasomatism along the slab-mantle interface in subduction zones[J]. Geochimica et Cosmochimica Acta, 2018, 237: 312−319.
|
[123] |
李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143−159.Li Shuguang. Tracing deep carbon recycling by Mg isotopes[J]. Earth Science Frontiers, 2015, 22(5): 143−159.
|
[124] |
Teng Fangzhen, Hu Yan, Chauvel C. Magnesium isotope geochemistry in arc volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7082−7087.
|
[125] |
Li Shuguang, Yang Wei, Ke Shan, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111−120. doi: 10.1093/nsr/nww070
|
[126] |
Chiaradia M, Barnes J D, Cadet-Voisin S. Chlorine stable isotope variations across the Quaternary volcanic arc of Ecuador[J]. Earth and Planetary Science Letters, 2014, 396: 22−33.
|
[127] |
Layne G D, Kent A J R, Bach W. δ37Cl systematics of a backarc spreading system: the Lau Basin[J]. Geology, 2009, 37(5): 427−430. doi: 10.1130/G25520A.1
|
[128] |
Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc[J]. Geology, 2008, 36(11): 883−886.
|
[129] |
Bouvier A S, Manzini M, Rose-Koga E F, et al. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions[J]. Earth and Planetary Science Letters, 2019, 507: 30−39.
|
[130] |
Manzini M, Bouvier A S, Barnes J D, et al. SIMS chlorine isotope analyses in melt inclusions from arc settings[J]. Chemical Geology, 2017, 449: 112−122.
|
[131] |
Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2016, 181: 217−237.
|
[132] |
Nielsen S G, Rehkämper M, Prytulak J. Investigation and application of thallium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 759−798.
|
[133] |
Shu Yunchao, Nielsen S G, Zeng Zhigang, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462−491. doi: 10.1016/j.gca.2017.08.035
|
[134] |
Prytulak J, Nielsen S G, Plank T, et al. Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc[J]. Chemical Geology, 2013, 345: 139−149. doi: 10.1016/j.chemgeo.2013.03.003
|
[135] |
Nielsen S G, Shimizu N, Lee C T A, et al. Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4905−4919. doi: 10.1002/2014GC005536
|
[136] |
Li Jilei, Gao Jun, John T, et al. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China)[J]. Geochimica et Cosmochimica Acta, 2013, 120: 326−362.
|
[137] |
Pons M L, Quitté G, Fujii T, et al. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17639−17643. doi: 10.1073/pnas.1108061108
|
[138] |
Pons M L, Debret B, Bouilhol P, et al. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones[J]. Nature Communications, 2016, 7: 13794. doi: 10.1038/ncomms13794
|
[139] |
Huang Jian, Zhang Xingchao, Chen Sha, et al. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting[J]. Geochimica et Cosmochimica Acta, 2018, 238: 85−101. doi: 10.1016/j.gca.2018.07.012
|
[140] |
Huang Jian, Zhang Xingchao, Huang Fang, et al. Zinc isotope systematics of subduction-zone magmas[C]//AGU, AGU 2016 Fall Meeting Abstract. Washington, DC: AGU, 2016.
|
[141] |
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325−394.
|
[142] |
Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 193−205.
|
[143] |
Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle[J]. Science Advances, 2018, 4(7): eaas8675. doi: 10.1126/sciadv.aas8675
|
[144] |
Yu Huimin, Nan X, Huang J, et al. Barium isotope geochemistry of subduction-zone magmas[C]//AGU, AGU 2017 Fall Meeting Abstract. Washington, DC: AGU, 2017.
|
[145] |
Yang Jie, Siebert C, Barling J, et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 162: 126−136. doi: 10.1016/j.gca.2015.04.011
|
[146] |
Freymuth H, Vils F, Willbold M, et al. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc[J]. Earth and Planetary Science Letters, 2015, 432: 176−186. doi: 10.1016/j.jpgl.2015.10.006
|
[147] |
König S, Wille M, Voegelin A, et al. Molybdenum isotope systematics in subduction zones[J]. Earth and Planetary Science Letters, 2016, 447: 95−102. doi: 10.1016/j.jpgl.2016.04.033
|
[148] |
Noll Jr P D, Newsom H E, Leeman W P, et al. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 587−611. doi: 10.1016/0016-7037(95)00405-X
|
[149] |
Green T H, Adam J. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700°C[J]. European Journal of Mineralogy, 2003, 15(5): 815−830. doi: 10.1127/0935-1221/2003/0015-0815
|
[150] |
König S, Münker C, Schuth S, et al. Mobility of tungsten in subduction zones[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 82−92.
|
[151] |
Voegelin A R, Pettke T, Greber N D, et al. Magma differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean Arc)[J]. Lithos, 2014, 190–191: 440−448. doi: 10.1016/j.lithos.2013.12.016
|
[152] |
Willbold M, Elliott T. Molybdenum isotope variations in magmatic rocks[J]. Chemical Geology, 2017, 449: 253−268. doi: 10.1016/j.chemgeo.2016.12.011
|
[153] |
Guo Jingfeng, Griffin W L, O’Reilly S Y. Geochemistry and origin of sulphide minerals in mantle xenoliths: Qilin, Southeastern China[J]. Journal of Petrology, 1999, 40(7): 1125−1149. doi: 10.1093/petroj/40.7.1125
|
[154] |
Hattori K H, Arai S, Clarke D B. Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides[J]. The Canadian Mineralogist, 2002, 40(2): 637−650. doi: 10.2113/gscanmin.40.2.637
|
[155] |
Lodders K. Abundances and condensation temperatures of the elements[J]. Meteoritics and Planetary Science Supplement, 2003, 38: 5272.
|
[156] |
Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2002, 66(18): 3191−3199. doi: 10.1016/S0016-7037(02)00918-3
|
[157] |
Yierpan A, König S, Labidi J, et al. Chemical sample processing for combined selenium isotope and selenium-tellurium elemental investigation of the earth's igneous reservoirs[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 516−533. doi: 10.1002/2017GC007299
|
[158] |
Kurzawa T, König S, Alt J C, et al. The role of subduction recycling on the selenium isotope signature of the mantle: constraints from Mariana arc lavas[J]. Chemical Geology, 2019, 513: 239−249. doi: 10.1016/j.chemgeo.2019.03.011
|
[159] |
Newmark R L, Anderson R N, Moos D, et al. Structure, porosity and stress regime of the upper oceanic crust: sonic and ultrasonic logging of DSDP Hole 504B[J]. Tectonophysics, 1985, 118(1/2): 1−42.
|
[160] |
Pezard P A. Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in Hole 504B[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6): 9237−9264. doi: 10.1029/JB095iB06p09237
|
[161] |
Edmond J M, Van Damm K L, Mcduff R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5863): 187−191. doi: 10.1038/297187a0
|
[162] |
张侠, 翟世奎, 于增慧, 等. 岩浆作用对海底热液系统物质的贡献[J]. 海洋科学, 2018, 42(4): 153−161.Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Review on magmatic contribution to seafloor hydrothermal systems[J]. Marine Sciences, 2018, 42(4): 153−161.
|
[163] |
Vidal P, Clauer N. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project RITA)[J]. Earth and Planetary Science Letters, 1981, 55(2): 237−246. doi: 10.1016/0012-821X(81)90103-5
|
[164] |
侯增谦, 李延河, 艾永德, 等. 冲绳海槽活动热水成矿系统的氦同位素组成: 幔源氦证据[J]. 中国科学(D辑: 地球科学), 1999, 29(2): 155−162.Hou Zengqian, Li Yanhe, Ai Yongde, et al. He isotopic composition of the active hydrothermal system in Okinawa Trough: Evidence for magmatic helium[J]. Science in China: Earth Science, 1999, 29(2): 155−162.
|
[165] |
于增慧. 冲绳海槽火山岩中岩浆包裹体及气体同位素组成研究[D]. 青岛: 中国科学院海洋研究所, 2000.Yu Zenghui. Study of the inclusions and the isotopic compositions of volatile components in volcanic rocks in the Okinawa Trough[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.
|
[166] |
Herzig P M, Hannington M D, Arribas Jr A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems[J]. Mineralium Deposita, 1998, 33(3): 226−237. doi: 10.1007/s001260050143
|
[167] |
Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67(2): 184−197. doi: 10.2113/gsecongeo.67.2.184
|
[168] |
汪品先, 田军, 黄恩清, 等. 地球系统与演变[M]. 北京: 科学出版社, 2019.Wang Pinxian, Tian Jun, Huang Enqing, et al. Earth System and Evolution[M]. Beijing: Science Press, 2019.
|