留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大洋岩石圈板块俯冲构造背景下流体的地质作用

徐婕 翟世奎 于增慧 王轲 张侠

徐婕,翟世奎,于增慧,等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报,2021,43(1):27–43 doi: 10.12284/hyxb2021021
引用本文: 徐婕,翟世奎,于增慧,等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报,2021,43(1):27–43 doi: 10.12284/hyxb2021021
Xu Jie,Zhai Shikui,Yu Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction[J]. Haiyang Xuebao,2021, 43(1):27–43 doi: 10.12284/hyxb2021021
Citation: Xu Jie,Zhai Shikui,Yu Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction[J]. Haiyang Xuebao,2021, 43(1):27–43 doi: 10.12284/hyxb2021021

大洋岩石圈板块俯冲构造背景下流体的地质作用

doi: 10.12284/hyxb2021021
基金项目: 国家重点基础研究发展计划(2013CB429702)。
详细信息
    作者简介:

    徐婕(1996—),女,山东省青岛市人,主要从事岩石地球化学研究。E-mail:xujie0630@qq.com

    通讯作者:

    翟世奎(1958—),男,教授,博士生导师,主要从事海洋地质学研究。E-mail:zhai2000@ouc.edu.cn

  • 中图分类号: P542

Geological processes of fluids in the oceanic lithosphere subduction

  • 摘要: 地幔中存在着大量的“水”(存在形式:H2O、H+和(HO))已是不争的事实,这些“水”既可以以流体或熔体的形式存在,又可以存在于含水矿物、名义上的无水矿物和致密含水镁硅酸盐中。在本文中,“流体”是指以水为主体包括溶解于水中或随水迁移的元素和化合物。在俯冲带的地震作用、地幔部分熔融、岩浆作用以及海底热液活动等重大地质作用过程中,流体都发挥着重要的作用。俯冲带是水化了的大洋岩石圈板块俯冲进入地球深处的关键部位,也是壳幔相互作用的重要地带。在俯冲带,流体随俯冲的岩石圈板块进入地球深部,部分在挤压和摩擦热的作用下脱逸俯冲的岩石圈板块,连同岩石矿物变质所产生的水进入上覆地幔楔,从而降低上覆地幔物质的熔点,产生岩浆;岩浆上升一方面加热了沿裂隙或物质间隙下渗的海水,另一方面也会因岩浆冷却产生岩浆作用后期热液流体,这些加热的下渗海水和岩浆作用后期流体构成了现代海底热液活动的物质基础;海底热液活动不仅将大量地下元素或物质输入大洋水体从而影响了大洋海水的物质组成及生态环境,而且在海底形成了具有重要经济价值的热液多金属矿体。因此,流体是贯穿板块俯冲及其所产生的各种重要地质作用过程的介质,从而成为研究这些重要地质作用的示踪剂。本文在分析了大洋岩石圈板块俯冲构造背景下流体的主要地质作用过程的基础上,探讨了流体在俯冲带地震发生机制、岩浆作用过程、现代海底热液活动模式及俯冲带流体成矿作用等方面的作用,并进一步提出近期研究工作应主要集中在4个方面:(1)进一步准确地定量评估通过板块俯冲作用进入地球深部的“流体”通量,为最终解决全球地球化学或物质循环问题作出贡献;(2)全面、准确地描述俯冲作用中流体的物理和化学行为,建立俯冲带流体地质作用的理论模型;(3)充分利用现代化的测试分析手段,重点获取矿物原位微区分析、矿物流体包裹体物理化学指标测试、稳定和放射性同位素分析等方面的精细准确数据,用于查明当前取样观测手段无法触及的地下深处物质状态和作用过程;(4)发展数值模拟技术,建立俯冲带流体地质作用的理论模型。
  • 图  1  海底热液活动双扩散对流模式(据文献[48])

    Fig.  1  The model of double diffusive convection of modern seafloor hydrothermal activity (from reference [48])

    图  2  俯冲带流体的地质作用

    Fig.  2  Geological processes of subduction zone fluids

  • [1] Tatsumi Y, Takahashi T. Operation of subduction factory and production of andesite[J]. Journal of Mineralogical and Petrological Sciences, 2006, 101(3): 145−153. doi: 10.2465/jmps.101.145
    [2] 倪怀玮, 张力, 郭璇. 水与地幔的部分熔融[J]. 中国科学: 地球科学, 2016, 46(3): 329-340.

    Ni Huaiwei, Zhang Li, Guo Xuan. Water and partial melting of Earth’s mantle[J]. Science China: Earth Sciences, 2016, 59(4): 720−730.
    [3] Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: a review[J]. Lithos, 2013, 170−171: 208−223. doi: 10.1016/j.lithos.2013.02.016
    [4] Peacock S A. Fluid processes in subduction zones[J]. Science, 1990, 248(4953): 329−337. doi: 10.1126/science.248.4953.329
    [5] Plank T, Manning C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343−352. doi: 10.1038/s41586-019-1643-z
    [6] Hwang H, Seoung D, Lee Y, et al. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle[J]. Nature Geoscience, 2017, 10(12): 947−953. doi: 10.1038/s41561-017-0008-1
    [7] Okazaki K, Hirth G. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust[J]. Nature, 2016, 530(7588): 81−84. doi: 10.1038/nature16501
    [8] Utada H, Koyama T, Obayashi M, et al. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry[J]. Earth and Planetary Science Letters, 2009, 281(3/4): 249−257.
    [9] Yoshino T, Manthilake G, Matsuzaki T, et al. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite[J]. Nature, 2008, 451(7176): 326−329. doi: 10.1038/nature06427
    [10] Dai Lidong, Karato S I. Electrical conductivity of wadsleyite at high temperatures and high pressures[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 277−283.
    [11] Pearson D G, Brenker F E, Nestola F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014, 507(7491): 221−224. doi: 10.1038/nature13080
    [12] Tschauner O, Huang S, Greenberg E, et al. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle[J]. Science, 2018, 359(6380): 1136−1139. doi: 10.1126/science.aao3030
    [13] Wirth R, Vollmer C, Brenker F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil)[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 384−399.
    [14] Ohtani E, Yuan Liang, Ohira I, et al. Fate of water transported into the deep mantle by slab subduction[J]. Journal of Asian Earth Sciences, 2018, 167: 2−10. doi: 10.1016/j.jseaes.2018.04.024
    [15] Masuti S, Barbot S D, Karato S I, et al. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake[J]. Nature, 2016, 538(7625): 373−377. doi: 10.1038/nature19783
    [16] Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123(4): 345−357. doi: 10.1007/s004100050161
    [17] Inoue T, Weidner D J, Northrup P A, et al. Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4[J]. Earth and Planetary Science Letters, 1998, 160(1/2): 107−113.
    [18] Bolfan-Casanova N, Keppler H, Rubie D C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite[J]. Geophysical Research Letters, 2003, 30(17): 1905.
    [19] Litasov K, Ohtani E, Langenhorst F, et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 189−203.
    [20] 杨翠平, 金振民, 吴耀. 地幔转换带中的水及其地球动力学意义[J]. 地学前缘, 2010, 17(3): 114−126.

    Yang Cuiping, Jin Zhenmin, Wu Yao. Water in the mantle transition zone and its geodynamic implications[J]. Earth Science Frontiers, 2010, 17(3): 114−126.
    [21] Bolfan-Casanova N. Water in the Earth’s mantle[J]. Mineralogical Magazine, 2005, 69(3): 229−257. doi: 10.1180/0026461056930248
    [22] Litasov K, Ohtani E. Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa[J]. Physics of the Earth and Planetary Interiors, 2002, 134(1-2): 105−127. doi: 10.1016/S0031-9201(02)00152-8
    [23] 夏群科. 地幔中的水与重大地质现象和过程[J]. 自然杂志, 2017, 39(1): 1−4.

    Xia Qunke. Water in the mantle connects with important geological events and processes[J]. Chinese Journal of Nature, 2017, 39(1): 1−4.
    [24] 刘鑫. 西北太平洋俯冲带构造特征及其对弧前大地震成因的影响[D]. 青岛: 中国海洋大学, 2013.

    Liu Xin. Structural heterogeneity of Northwest-Pacific subduction zones and itsimplications for interplate megathrust earthquakes[D]. Qingdao: Ocean University of China, 2013.
    [25] Wells R E, Blakely R J, Wech A G, et al. Cascadia subduction tremor muted by crustal faults[J]. Geology, 2017, 45(6): 515−518.
    [26] Nakajima J, Uchida N. Repeated drainage from megathrusts during episodic slow slip[J]. Nature Geoscience, 2018, 11(5): 351−356. doi: 10.1038/s41561-018-0090-z
    [27] Green II H W. The mechanism of deep earthquakes[J]. Eos, Transactions American Geophysical Union, 1993, 74(2): 23.
    [28] 邵同宾, 宋茂双, 嵇少丞, 等. 水对名义无水矿物变形的影响[J]. 大地构造与成矿学, 2013, 37(1): 138−163. doi: 10.3969/j.issn.1001-1552.2013.01.015

    Shao Tongbin, Song Maoshuang, Ji Shaocheng, et al. Influence of water on deformation of NAMs: a review[J]. Geotectonica et Metallogenia, 2013, 37(1): 138−163. doi: 10.3969/j.issn.1001-1552.2013.01.015
    [29] Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2030.
    [30] Yamasaki T, Seno T. Double seismic zone and dehydration embrittlement of the subducting slab[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2212.
    [31] Peacock S M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J]. Geology, 2001, 29(4): 299−302.
    [32] Davies J H. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism[J]. Nature, 1999, 398(6723): 142−145. doi: 10.1038/18202
    [33] Zhang Junfeng, Green II H W, Bozhilov K, et al. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust[J]. Nature, 2004, 428(6983): 633−636.
    [34] Barcheck C G, Wiens D A, van Keken P E, et al. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs[J]. Earth and Planetary Science Letters, 2012, 349–350: 153−160.
    [35] Bebout G E. Metamorphic chemical geodynamics of subduction zones[J]. Earth and Planetary Science Letters, 2007, 260(3/4): 373−393.
    [36] Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63.
    [37] Michael P J, Chase R L. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation[J]. Contributions to Mineralogy and Petrology, 1987, 96(2): 245−263.
    [38] Zimmer M M, Plank T, Hauri E H, et al. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index[J]. Journal of Petrology, 2010, 51(12): 2411−2444. doi: 10.1093/petrology/egq062
    [39] Desbruyères D, Alayse-Danet A M, Ohta S. Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food web[J]. Marine Geology, 1994, 116(1/2): 227−242.
    [40] Desbruyères D, Hashimoto J, Fabri M C. Composition and biogeography of hydrothermal vent communities in western pacific back-arc basins[J]. Geophysical Monograph, 2006, 166: 215−234.
    [41] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
    [42] Barriga F, Fouquet Y, Almeida A, et al. Discovery of the Saldanha hydrothermal field on the famous segment of the MAR (36°30'N)[J]. AGU Fall Meeting, Eos Transactions, 1998, 79(45): F67.
    [43] Schroeder T, John B, Frost B R. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges[J]. Geology, 2002, 30(4): 367−370. doi: 10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2
    [44] Rona P A. Pattern of hydrothermal mineral deposition: Mid-Atlantic Ridge crest at latitude 26°N[J]. Marine Geology, 1976, 21(4): 59−66. doi: 10.1016/0025-3227(76)90009-8
    [45] Franklin J M, Sangster D F, Lydon J W. Volcanic-associated massive sulfide deposits[M]//Skinner B J. Economic Geology Publishing Company Seventy-Fifth Anniversary Volume. McLean, VA: GeoScienceWorld, 1981: 485–627.
    [46] Yang Kaihui, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383(6599): 420−423. doi: 10.1038/383420a0
    [47] Kim J, Lee I, Lee K Y. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, Western Pacific: evaluation of magmatic contribution to hydrothermal system[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B12): 159−163. doi: 10.1029/2003JB002912
    [48] 王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3): 835−850.

    Wang Shujie, Zhai Shikui, Yu Zenghui, et al. Reflections on model of modern seafloor hydrothermal system[J]. Earth Science, 2018, 43(3): 835−850.
    [49] Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1−3-38.
    [50] Liu Xingcheng, Matsukage K N, Nishihara Y, et al. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust[J]. American Mineralogist, 2019, 104(1): 64−72. doi: 10.2138/am-2019-6559
    [51] Faccenda M, Gerya T V, Burlini L. Deep slab hydration induced by bending-related variations in tectonic pressure[J]. Nature Geoscience, 2009, 2(11): 790−793. doi: 10.1038/ngeo656
    [52] Schmandt B, Jacobsen S D, Becker T W, et al. Dehydration melting at the top of the lower mantle[J]. Science, 2014, 344(6189): 1265−1268. doi: 10.1126/science.1253358
    [53] Tonegawa T, Hirahara K, Shibutani T, et al. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 346−354.
    [54] Kerrick D M. Present and past nonanthropogenic CO2 degassing from the solid earth[J]. Reviews of Geophysics, 2001, 39(4): 565−585. doi: 10.1029/2001RG000105
    [55] Pan Ding, Spanu L, Harrison B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646−6650. doi: 10.1073/pnas.1221581110
    [56] Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355−360.
    [57] Grassi D, Schmidt M W. The melting of carbonated pelites from 70 to 700 km depth[J]. Journal of Petrology, 2011, 52(4): 765−789. doi: 10.1093/petrology/egr002
    [58] Martin L A J, Hermann J. Experimental phase relations in altered oceanic crust: implications for carbon recycling at subduction zones[J]. Journal of Petrology, 2018, 59(2): 299−320.
    [59] Behn M D, Kelemen P B, Hirth G, et al. Diapirs as the source of the sediment signature in arc lavas[J]. Nature Geoscience, 2011, 4(9): 641−646. doi: 10.1038/ngeo1214
    [60] Kelemen P B, Manning C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997−E4006.
    [61] Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519−527. doi: 10.1038/370519a0
    [62] van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
    [63] Magni V, Faccenna C, van Hunen J, et al. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models[J]. Geology, 2014, 42(6): 511−514. doi: 10.1130/G35446.1
    [64] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4): 651−682.

    Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones[J]. Science China: Earth Sciences, 2016, 59(4): 651−682.
    [65] Poli S, Schmidt M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2003, 30: 207−235.
    [66] Schmidt M W, Poli S. Devolatilization during subduction[J]. Treatise on Geochemistry, 2014, 4: 669−701.
    [67] Zheng Yongfei. Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks[J]. Journal of the Geological Society, 2009, 166(4): 763−782.
    [68] Zheng Yongfei, Xia Qiongxia, Chen Renxu, et al. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision[J]. Earth-Science Reviews, 2011, 107(3/4): 342−374.
    [69] 刘巍, 杜建国, 白利平. 浅谈超临界流体在地震孕育过程中的作用[J]. 地震地质, 2000, 22(4): 439−444. doi: 10.3969/j.issn.0253-4967.2000.04.013

    Liu Wei, Du Jianguo, Bai Liping. A review on the role of supercritical fluids earthquake generation[J]. Seismology and Geology, 2000, 22(4): 439−444. doi: 10.3969/j.issn.0253-4967.2000.04.013
    [70] Audétat A, Keppler H. Viscosity of fluids in subduction zones[J]. Science, 2004, 303(5657): 513−516.
    [71] Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth[J]. Nature, 2005, 437(7059): 724−727.
    [72] Rapp J F, Klemme S, Butler I B, et al. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation[J]. Geology, 2010, 38(4): 323−326. doi: 10.1130/G30753.1
    [73] Hermann J, Zheng Yongfei, Rubatto D. Deep fluids in subducted continental crust[J]. Elements, 2013, 9(4): 281−287. doi: 10.2113/gselements.9.4.281
    [74] Hack A C, Thompson A B. Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes[J]. Journal of Petrology, 2011, 52(7/8): 1333−1362.
    [75] Pirard C, Hermann J. Focused fluid transfer through the mantle above subduction zones[J]. Geology, 2015, 43(10): 915−918.
    [76] Till C B, Grove T L, Withers A C. The beginnings of hydrous mantle wedge melting[J]. Contributions to Mineralogy and Petrology, 2012, 163(4): 669−688.
    [77] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07006.
    [78] Peate D W, Pearce J A. Causes of spatial compositional variations in Mariana arc lavas: trace element evidence[J]. Island Arc, 1998, 7(3): 479−495.
    [79] 宗统, 翟世奎, 于增慧. 冲绳海槽岩浆作用的区域性差异[J]. 地球科学, 2016, 41(6): 1031−1040.

    Zong Tong, Zhai Shikui, Yu Zenghui. Regional differences of magmatism in the Okinawa Trough[J]. Earth Science, 2016, 41(6): 1031−1040.
    [80] Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern Manus Basin[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542−1552.
    [81] John T, Scambelluri M, Frische M, et al. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 65−76.
    [82] Gill J B, Morris J D, Johnson R W. Timescale for producing the geochemical signature of island arc magmas: U-Th-Po and Be-B systematics in recent Papua New Guinea lavas[J]. Geochimica et Cosmochimica Acta, 1993, 57(17): 4269−4283.
    [83] Dreyer B M, Morris J D, Gill J B. Incorporation of subducted slab-derived sediment and fluid in arc magmas: B-Be-10Be-εNd systematics of the Kurile convergent margin, Russia[J]. Journal of Petrology, 2010, 51(8): 1761−1782.
    [84] Shimaoka A, Imamura M, Kaneoka I. Beryllium isotopic systematics in island arc volcanic rocks from northeast Japan: implications for the incorporation of oceanic sediments into island arc magmas[J]. Chemical Geology, 2016, 443: 158−172.
    [85] Tanimizu M. Geophysical determination of the 138La β- decay constant[J]. Physical Review C, 2000, 62(1): 017601.
    [86] Bonnand P, Israel C, Boyet M, et al. Radiogenic and stable Ce isotope measurements by thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(3): 504−516.
    [87] Bellot N, Boyet M, Doucelance R, et al. Ce isotope systematics of island arc lavas from the Lesser Antilles[J]. Geochimica et Cosmochimica Acta, 2015, 168: 261−279.
    [88] Bellot N, Boyet M, Doucelance R, et al. Origin of negative cerium anomalies in subduction-related volcanic samples: constraints from Ce and Nd isotopes[J]. Chemical Geology, 2018, 500: 46−63.
    [89] Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids[J]. Nature, 1996, 380(6571): 237−240.
    [90] Blundy J, Wood B. Mineral-melt partitioning of uranium, thorium and their daughters[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 59−123.
    [91] Hawkesworth C J, Turner S P, McDermott F, et al. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust[J]. Science, 1997, 276(5312): 551−555.
    [92] Avanzinelli R, Prytulak J, Skora S, et al. Combined 238U-230Th and 235U-231Pa constraints on the transport of slab-derived material beneath the Mariana Islands[J]. Geochimica et Cosmochimica Acta, 2012, 92: 308−328.
    [93] 黄方, 冷伟. 俯冲速率对岛弧岩浆岩铀系不平衡的控制[C]//中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 南京: 中国矿物岩石地球化学学会, 2013.

    Huang Fang, Leng Wei. The control of subduction rate on U-Series imbalance of island arc magmatic rocks[C]//Abstracts of Papers for the 14th Annual Conference of Chinese Society for Mineralogy Petrology and Geochemistry. Nanjing: Chinese Society of Mineral Petrogeochemistry, 2013.
    [94] 黄方, 张鞠琳. 岩浆演化对岛弧岩浆岩的铀系不平衡的影响[J]. 矿物岩石地球化学通报, 2013, 32(2): 204−211. doi: 10.3969/j.issn.1007-2802.2013.02.006

    Huang Fang, Zhang Julin. Effect of magma differentiation on u-series disequilibria in arc lavas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 204−211. doi: 10.3969/j.issn.1007-2802.2013.02.006
    [95] Ryan J G, Langmuir C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1727−1741.
    [96] Elliott T, Jeffcoate A, Kasemann S. Li isotopic evidence for subduction induced mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 2006, 70(18S): A159.
    [97] Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907−910.
    [98] 刘海洋. 俯冲带变质作用与岩浆过程中的锂同位素地球化学[D]. 合肥: 中国科学技术大学, 2018.

    Liu Haiyang. Lithium isotope geochemistry in subduction zone metamorphism and magmatic process[D]. Hefei: University of Science and Technology of China, 2018.
    [99] Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1/2): 145−154.
    [100] Brooker R A, James R H, Blundy J D. Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle[J]. Chemical Geology, 2004, 212(1/2): 179−204.
    [101] Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1/2): 59−79.
    [102] Chan L H, Leeman W P, Plank T. Lithium isotopic composition of marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6): Q06005.
    [103] Moriguti T, Shibata T, Nakamura E. Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition[J]. Chemical Geology, 2004, 212(1/2): 81−100.
    [104] Agostini S, Ryan J G, Tonarini S, et al. Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 139−147.
    [105] Guo Kun, Zhai Shikui, Yu Zenghui, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: implications for the influence of subduction components and the contamination of crustal materials[J]. Journal of Marine Systems, 2018, 180: 140−151. doi: 10.1016/j.jmarsys.2016.11.009
    [106] Marschall H R, von Strandmann P A E P, Seitz H M, et al. The lithium isotopic composition of orogenic eclogites and deep subducted slabs[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 563−580.
    [107] Wunder B, Meixner A, Romer R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112−120. doi: 10.1007/s00410-005-0049-0
    [108] 梁光明, 蒋佳俊, 靳佳冀, 等. 顽火辉石中Li同位素扩散与分馏[J]. 矿物学报, 2018, 38(1): 36−40.

    Liang Guangming, Jiang Jiajun, Jin Jiayi, et al. Theoretical study on lithium diffusion and fractionation in enstatite[J]. Acta Mineralogica Sinica, 2018, 38(1): 36−40.
    [109] 蒋佳俊, 梁光明, 靳佳冀, 等. Li同位素在斜顽辉石、镁铝榴石及镁铝尖晶石晶格内扩散与分馏的理论计算研究[J]. 岩石学报, 2018, 34(9): 2811−2818.

    Jiang Jiajun, Liang Guangming, Jin Jiaji, et al. Theoretical study of lithium diffusion and fractionation in the lattice of clinoenstatite, pyrope and spinel[J]. Acta Petrologica Sinica, 2018, 34(9): 2811−2818.
    [110] 蒋少涌, 于际民, 凌洪飞, 等. 壳−幔演化和板块俯冲作用过程中的硼同位素示踪[J]. 地学前缘, 2000, 7(2): 391−399.

    Jiang Shaoyong, Yu Jimin, Ling Hongfei, et al. Boron isotope as a tracer in the study of crust-mantle evolution and subduction processes[J]. Earth Science Frontiers, 2000, 7(2): 391−399.
    [111] Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215−217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2
    [112] Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 273−282.
    [113] Tonarini S, Leeman W P, Leat P T. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 275−284.
    [114] Ishikawa T, Nakamura E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes[J]. Nature, 1994, 370(6486): 205−208. doi: 10.1038/370205a0
    [115] Harvey J, Garrido C J, Savov I, et al. 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle[J]. Chemical Geology, 2014, 376: 20−30. doi: 10.1016/j.chemgeo.2014.03.015
    [116] Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes[J]. Geological Journal, 2019, 54(1): 605−613. doi: 10.1002/gj.3209
    [117] Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1−16.
    [118] Scambelluri M, Pettke T, Cannaò E. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)[J]. Earth and Planetary Science Letters, 2015, 429: 45−59. doi: 10.1016/j.jpgl.2015.07.060
    [119] Chen Yixiang, Schertl H P, Zheng Yongfei, et al. Mg-O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps[J]. Earth and Planetary Science Letters, 2016, 456: 157−167. doi: 10.1016/j.jpgl.2016.09.010
    [120] Wang Shuijiong, Teng Fangzhen, Li Shuguang, et al. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes[J]. Lithos, 2017, 290–291: 94−103.
    [121] Teng Fangzhen, Li Wangye, Ke Shan, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150−4166. doi: 10.1016/j.gca.2010.04.019
    [122] Li Wangye, Teng Fangzhen, Xiao Yilin. Magnesium isotope record of fluid metasomatism along the slab-mantle interface in subduction zones[J]. Geochimica et Cosmochimica Acta, 2018, 237: 312−319.
    [123] 李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143−159.

    Li Shuguang. Tracing deep carbon recycling by Mg isotopes[J]. Earth Science Frontiers, 2015, 22(5): 143−159.
    [124] Teng Fangzhen, Hu Yan, Chauvel C. Magnesium isotope geochemistry in arc volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7082−7087.
    [125] Li Shuguang, Yang Wei, Ke Shan, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111−120. doi: 10.1093/nsr/nww070
    [126] Chiaradia M, Barnes J D, Cadet-Voisin S. Chlorine stable isotope variations across the Quaternary volcanic arc of Ecuador[J]. Earth and Planetary Science Letters, 2014, 396: 22−33.
    [127] Layne G D, Kent A J R, Bach W. δ37Cl systematics of a backarc spreading system: the Lau Basin[J]. Geology, 2009, 37(5): 427−430. doi: 10.1130/G25520A.1
    [128] Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc[J]. Geology, 2008, 36(11): 883−886.
    [129] Bouvier A S, Manzini M, Rose-Koga E F, et al. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions[J]. Earth and Planetary Science Letters, 2019, 507: 30−39.
    [130] Manzini M, Bouvier A S, Barnes J D, et al. SIMS chlorine isotope analyses in melt inclusions from arc settings[J]. Chemical Geology, 2017, 449: 112−122.
    [131] Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2016, 181: 217−237.
    [132] Nielsen S G, Rehkämper M, Prytulak J. Investigation and application of thallium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 759−798.
    [133] Shu Yunchao, Nielsen S G, Zeng Zhigang, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462−491. doi: 10.1016/j.gca.2017.08.035
    [134] Prytulak J, Nielsen S G, Plank T, et al. Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc[J]. Chemical Geology, 2013, 345: 139−149. doi: 10.1016/j.chemgeo.2013.03.003
    [135] Nielsen S G, Shimizu N, Lee C T A, et al. Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4905−4919. doi: 10.1002/2014GC005536
    [136] Li Jilei, Gao Jun, John T, et al. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China)[J]. Geochimica et Cosmochimica Acta, 2013, 120: 326−362.
    [137] Pons M L, Quitté G, Fujii T, et al. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17639−17643. doi: 10.1073/pnas.1108061108
    [138] Pons M L, Debret B, Bouilhol P, et al. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones[J]. Nature Communications, 2016, 7: 13794. doi: 10.1038/ncomms13794
    [139] Huang Jian, Zhang Xingchao, Chen Sha, et al. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting[J]. Geochimica et Cosmochimica Acta, 2018, 238: 85−101. doi: 10.1016/j.gca.2018.07.012
    [140] Huang Jian, Zhang Xingchao, Huang Fang, et al. Zinc isotope systematics of subduction-zone magmas[C]//AGU, AGU 2016 Fall Meeting Abstract. Washington, DC: AGU, 2016.
    [141] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325−394.
    [142] Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 193−205.
    [143] Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle[J]. Science Advances, 2018, 4(7): eaas8675. doi: 10.1126/sciadv.aas8675
    [144] Yu Huimin, Nan X, Huang J, et al. Barium isotope geochemistry of subduction-zone magmas[C]//AGU, AGU 2017 Fall Meeting Abstract. Washington, DC: AGU, 2017.
    [145] Yang Jie, Siebert C, Barling J, et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 162: 126−136. doi: 10.1016/j.gca.2015.04.011
    [146] Freymuth H, Vils F, Willbold M, et al. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc[J]. Earth and Planetary Science Letters, 2015, 432: 176−186. doi: 10.1016/j.jpgl.2015.10.006
    [147] König S, Wille M, Voegelin A, et al. Molybdenum isotope systematics in subduction zones[J]. Earth and Planetary Science Letters, 2016, 447: 95−102. doi: 10.1016/j.jpgl.2016.04.033
    [148] Noll Jr P D, Newsom H E, Leeman W P, et al. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 587−611. doi: 10.1016/0016-7037(95)00405-X
    [149] Green T H, Adam J. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700°C[J]. European Journal of Mineralogy, 2003, 15(5): 815−830. doi: 10.1127/0935-1221/2003/0015-0815
    [150] König S, Münker C, Schuth S, et al. Mobility of tungsten in subduction zones[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 82−92.
    [151] Voegelin A R, Pettke T, Greber N D, et al. Magma differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean Arc)[J]. Lithos, 2014, 190–191: 440−448. doi: 10.1016/j.lithos.2013.12.016
    [152] Willbold M, Elliott T. Molybdenum isotope variations in magmatic rocks[J]. Chemical Geology, 2017, 449: 253−268. doi: 10.1016/j.chemgeo.2016.12.011
    [153] Guo Jingfeng, Griffin W L, O’Reilly S Y. Geochemistry and origin of sulphide minerals in mantle xenoliths: Qilin, Southeastern China[J]. Journal of Petrology, 1999, 40(7): 1125−1149. doi: 10.1093/petroj/40.7.1125
    [154] Hattori K H, Arai S, Clarke D B. Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides[J]. The Canadian Mineralogist, 2002, 40(2): 637−650. doi: 10.2113/gscanmin.40.2.637
    [155] Lodders K. Abundances and condensation temperatures of the elements[J]. Meteoritics and Planetary Science Supplement, 2003, 38: 5272.
    [156] Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2002, 66(18): 3191−3199. doi: 10.1016/S0016-7037(02)00918-3
    [157] Yierpan A, König S, Labidi J, et al. Chemical sample processing for combined selenium isotope and selenium-tellurium elemental investigation of the earth's igneous reservoirs[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 516−533. doi: 10.1002/2017GC007299
    [158] Kurzawa T, König S, Alt J C, et al. The role of subduction recycling on the selenium isotope signature of the mantle: constraints from Mariana arc lavas[J]. Chemical Geology, 2019, 513: 239−249. doi: 10.1016/j.chemgeo.2019.03.011
    [159] Newmark R L, Anderson R N, Moos D, et al. Structure, porosity and stress regime of the upper oceanic crust: sonic and ultrasonic logging of DSDP Hole 504B[J]. Tectonophysics, 1985, 118(1/2): 1−42.
    [160] Pezard P A. Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in Hole 504B[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6): 9237−9264. doi: 10.1029/JB095iB06p09237
    [161] Edmond J M, Van Damm K L, Mcduff R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5863): 187−191. doi: 10.1038/297187a0
    [162] 张侠, 翟世奎, 于增慧, 等. 岩浆作用对海底热液系统物质的贡献[J]. 海洋科学, 2018, 42(4): 153−161.

    Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Review on magmatic contribution to seafloor hydrothermal systems[J]. Marine Sciences, 2018, 42(4): 153−161.
    [163] Vidal P, Clauer N. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project RITA)[J]. Earth and Planetary Science Letters, 1981, 55(2): 237−246. doi: 10.1016/0012-821X(81)90103-5
    [164] 侯增谦, 李延河, 艾永德, 等. 冲绳海槽活动热水成矿系统的氦同位素组成: 幔源氦证据[J]. 中国科学(D辑: 地球科学), 1999, 29(2): 155−162.

    Hou Zengqian, Li Yanhe, Ai Yongde, et al. He isotopic composition of the active hydrothermal system in Okinawa Trough: Evidence for magmatic helium[J]. Science in China: Earth Science, 1999, 29(2): 155−162.
    [165] 于增慧. 冲绳海槽火山岩中岩浆包裹体及气体同位素组成研究[D]. 青岛: 中国科学院海洋研究所, 2000.

    Yu Zenghui. Study of the inclusions and the isotopic compositions of volatile components in volcanic rocks in the Okinawa Trough[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.
    [166] Herzig P M, Hannington M D, Arribas Jr A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems[J]. Mineralium Deposita, 1998, 33(3): 226−237. doi: 10.1007/s001260050143
    [167] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67(2): 184−197. doi: 10.2113/gsecongeo.67.2.184
    [168] 汪品先, 田军, 黄恩清, 等. 地球系统与演变[M]. 北京: 科学出版社, 2019.

    Wang Pinxian, Tian Jun, Huang Enqing, et al. Earth System and Evolution[M]. Beijing: Science Press, 2019.
  • 加载中
图(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  39
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-09-10
  • 网络出版日期:  2021-02-24
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回