留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响

王维政 曾泽乾 黄建盛 郭志雄 李洪娟 陈刚

王维政,曾泽乾,黄建盛,等. 低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J]. 海洋学报,2021,43(2):49–58 doi: 10.12284/hyxb2021012
引用本文: 王维政,曾泽乾,黄建盛,等. 低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J]. 海洋学报,2021,43(2):49–58 doi: 10.12284/hyxb2021012
Wang Weizheng,Zeng Zeqian,Huang Jiansheng, et al. Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia ( Rachycentron canadum)[J]. Haiyang Xuebao,2021, 43(2):49–58 doi: 10.12284/hyxb2021012
Citation: Wang Weizheng,Zeng Zeqian,Huang Jiansheng, et al. Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia ( Rachycentron canadum )[J]. Haiyang Xuebao,2021, 43(2):49–58 doi: 10.12284/hyxb2021012

低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响

doi: 10.12284/hyxb2021012
基金项目: 现代农业产业技术体系专项资金(CARS-47);南方海洋科学与工程广东省实验室(湛江)资助项目(ZJW-2019-06);广东海洋大学大学生创新创业训练计划项目(CXXL2018131)。
详细信息
    作者简介:

    王维政(1995—),男,广东省广州市人,主要研究方向为海水鱼类养殖生理生态学。E-mail:1029588896@qq.com

    通讯作者:

    黄建盛,副教授,主要研究方向为海水鱼养殖生理生态学。E-mail:huangjs@gdou.edu.cn

  • 中图分类号: P714+.5

Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia (Rachycentron canadum)

  • 摘要: 为了研究低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响,将体重为(50.44±2.78) g的军曹鱼幼鱼在(3.15±0.21) mg/L的低氧环境下养殖4周,分别在第1天、第7天、第14天、第28天取样并进行相关指标的测定。结果表明,在低氧胁迫过程中:(1)军曹鱼幼鱼生长受到低氧的抑制,增重率和特定生长率显著低于对照水平(p<0.05)。(2)血清肝功能指标表现为不同程度的上升趋势,其中谷草转氨酶(AST)在第7天、第14天、第28天极显著高于对照组(p<0.01);谷丙转氨酶活性在第14天、第28天极显著高于对照组(p<0.01);总蛋白和白蛋白含量均在第14天和第28天与对照组有显著性差异(p<0.05)。(3)血清糖脂水平表现为波动升高的趋势,其中血糖含量在第1天、第14天和第28天与对照水平有显著性差异(p<0.05);甘油三酯含量在第14天和第28天极显著高于对照水平(p<0.01);总胆固醇含量在第1天显著下降(p<0.05)后呈不断上升的趋势。(4)血清离子含量变化情况各异,其中钠离子和氯离子含量在第14天和第28天极显著升高(p<0.01);钾离子含量不断升高并在第7天、第14天和第28天与对照组具有显著性差异(p<0.05);钙离子含量则呈不断下降的变化趋势,在第14天和第28天显著低于对照水平(p<0.05)。(5)血清超氧化物歧化酶活性持续升高,并在第7天、第14天、第28天极显著高于对照组(p<0.01);丙二醛含量持续上升,并在第14天、第28天极显著高于对照组(p<0.01);过氧化氢酶活性表现为“下降−上升−下降”变化趋势;溶菌酶活性在第1天显著升高(p<0.05)后下降。研究结果显示,低氧胁迫对军曹鱼幼鱼造成一定程度的氧化损伤,抑制其生长并使血清生化和非特异性免疫相关指标发生显著变化,表明军曹鱼机体物质代谢和免疫系统受到影响。
  • 图  1  低氧胁迫对军曹鱼幼鱼特定生长率(a)、增重率(b)的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  1  Effects of hypoxia on the specific growth rate (a) and weight gain rate (b) in the serum of juvenile cobia (Rachycentron canadum)

    *Shows significant difference (p<0.05), **shows extremely significant difference (p<0.01)

    图  2  低氧胁迫对军曹鱼幼鱼血清谷草转氨酶(a)、谷丙转氨酶(b)活性和总蛋白(c)、白蛋白(d)含量的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  2  Effects of hypoxia on the activities of aspartate aminotransferase (a), alanine aminotransferase (b), and the contents of total protein (c) and albumin (d) in the serum of juvenile cobia (Rachycentron canadum)

    *Shows significant difference (p<0.05), **shows extremely significant difference (p<0.01)

    图  3  低氧胁迫对军曹鱼幼鱼血清葡萄糖(a)、总胆固醇(b)和甘油三酯(c)含量的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  3  Effects of hypoxia on the contents of glucose (a), total cholesterol (b), and triglyceride (c) in the serum of juvenile cobia (Rachycentron canadum)

    *Shows significant difference (p<0.05), **shows extremely significant difference (p<0.01)

    图  4  低氧胁迫对军曹鱼幼鱼血清钠离子(a)、钾离子(b)、氯离子(c)和钙离子(d)含量的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  4  Effects of hypoxia on the contents of sodium ion (a), potassium ion (b), chloride ion (c) and calcium ion (d) in the serum of juvenile cobia (Rachycentron canadum)

    *Shows significant difference (p<0.05), **shows extremely significant difference (p<0.01)

    图  5  低氧胁迫对军曹鱼幼鱼血清超氧化物歧化酶(a)、过氧化氢酶(b)、溶菌酶(d)活性和丙二醛(c)含量的影响

    *表示差异显著(p<0.05),**表示差异极显著(p<0.01)

    Fig.  5  Effects of hypoxia on the activities of superoxide dismutase (a), catalase (b), lysozyme (d) and the contents of malondialdehyde (c) in the serum of juvenile cobia (Rachycentron canadum)

    *Shows significant difference (p<0.05), **shows extremely significant difference (p<0.01)

  • [1] Sheng Yuan, Hua Zhaoyan, Yang Zhou, et al. Effects of acute hypoxic stress on biochemical parameters, immune regulation and metabolic capacity of the blood in genetically improved farmed tilapia (GIFT, Oreochromis niloticus)[J]. Journal of Applied Ichthyology, 2019, 35(4): 978−986.
    [2] Wang S Y, Lau K, Lai Kengpo, et al. Hypoxia causes transgenerational impairments in reproduction of fish[J]. Nature Communications, 2016, 7: 12114. doi: 10.1038/ncomms12114
    [3] Yang S, Wu H, He K, et al. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress[J]. Science of the Total Environment, 2019, 666: 1071−1079. doi: 10.1016/j.scitotenv.2019.02.236
    [4] 石华洪, 苗亮, 李明云, 等. 水体低氧对香鱼幼鱼生长和消化酶活性的影响[J]. 生命科学研究, 2019, 23(6): 469−475.

    Shi Huahong, Miao Liang, Li Mingyun, et al. Effects of hypoxia on growth and activities of digestive enzymes of juvenile sweet fish (Plecoglossus altivelis)[J]. Life Science Research, 2019, 23(6): 469−475.
    [5] Singh S P, Sharma J, Ahmad T, et al. Oxygen stress: impact on innate immune system, antioxidant defence system and expression of HIF-1α and ATPase 6 genes in Catla catla[J]. Fish Physiology and Biochemistry, 2016, 42(2): 673−688. doi: 10.1007/s10695-015-0168-0
    [6] 艾春香. 军曹鱼的养殖生物学特性及营养需求[J]. 饲料研究, 2004(2): 41−44.

    Ai Chunxiang. Nutrient requirements and biological characteristics of Rachycentron canadum Linnaeus[J]. Feed Research, 2004(2): 41−44.
    [7] 王中铎, 陈铁妹, 郭昱嵩, 等. 军曹鱼全人工繁殖群体遗传特征的SSR分析[J]. 广东海洋大学学报, 2010, 30(3): 16−21.

    Wang Zhongduo, Chen Tiemei, Guo Yusong, et al. A genetic analysis of cultured populations of cobia (Rachycentron canadum) with microsatellite markers[J]. Journal of Guangdong Ocean University, 2010, 30(3): 16−21.
    [8] 黄建盛, 陆枝, 陈刚, 等. 急性低氧胁迫对军曹鱼大规格幼鱼血液生化指标的影响[J]. 海洋学报, 2019, 41(6): 76−84.

    Huang Jiansheng, Lu Zhi, Chen Gang, et al. Acute hypoxia stress on blood biochemical indexes of large-sized juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2019, 41(6): 76−84.
    [9] 冀德伟, 李明云, 王天柱, 等. 不同低温胁迫时间对大黄鱼血清生化指标的影响[J]. 水产科学, 2009, 28(1): 1−4.

    Ji Dewei, Li Mingyun, Wang Tianzhu, et al. Effects of low temperature stress periods on serum biochemical indexes in large yellow croaker Pseudosciaena crocea[J]. Fisheries Science, 2009, 28(1): 1−4.
    [10] Ni Meng, Wen Haishen, Li Jifang, et al. The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress[J]. Fish & Shellfish Immunology, 2014, 36(2): 325−335.
    [11] Keleştemur G T. Effects of hypoxic stress on electrolyte levels of blood in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Iranian Journal of Fisheries Sciences, 2012, 11(4): 930−937.
    [12] Tripathi R K, Mohindra V, Singh A, et al. Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish, Clarias batrachus (Linnaeus, 1758)[J]. Journal of Biosciences, 2013, 38(2): 373−383. doi: 10.1007/s12038-013-9304-0
    [13] Kvamme B O, Gadan K, Finne-Fridell F, et al. Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress[J]. Fish & Shellfish Immunology, 2013, 34(1): 55−65.
    [14] Abdel-Tawwab M, Monier M N, Hoseinifar S H, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers[J]. Fish Physiology and Biochemistry, 2019, 45(3): 997−1013. doi: 10.1007/s10695-019-00614-9
    [15] Brito R, Chimal M E, Gaxiola G, et al. Growth, metabolic rate, and digestive enzyme activity in the white shrimp Litopenaeus setiferus early postlarvae fed different diets[J]. Journal of Experimental Marine Biology and Ecology, 2000, 255(1): 21−36. doi: 10.1016/S0022-0981(00)00287-2
    [16] Foss A, Evensen T H, Øiestad V. Effects of hypoxia and hyperoxia on growth and food conversion efficiency in the spotted wolffish Anarhichas minor (Olafsen)[J]. Aquaculture Research, 2002, 33(6): 437−444. doi: 10.1046/j.1365-2109.2002.00693.x
    [17] Gan L, Liu Y J, Tian L X, et al. Effects of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella[J]. Aquaculture Nutrition, 2013, 19(6): 860−869. doi: 10.1111/anu.12030
    [18] 赵盼月, 卢俊姣, 翟少伟. 原花青素对饲料镉胁迫下吉富罗非鱼肝胰脏健康状况有关指标的影响[J]. 饲料工业, 2016, 37(24): 19−23.

    Zhao Panyue, Lu Junjiao, Zhai Shaowei. Effects of oligomeric proanthocyanidins supplemention on some parameters related to hepatopancreas health of GIFT tilapia exposed to dietary cadmium stress[J]. Feed Industry, 2016, 37(24): 19−23.
    [19] 武洪志, 王志龙, 许灵敏, 等. 发酵北苍术对断奶仔猪血清免疫指标和生化指标的影响[J]. 中国畜牧兽医, 2017, 44(2): 463−468.

    Wu Hongzhi, Wang Zhilong, Xu Lingmin, et al. Effects of fermented Atractylodes Chinensis on serum immune and biochemical indexes of weaned piglets[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(2): 463−468.
    [20] 廖英杰, 刘波, 任鸣春, 等. 精氨酸对团头鲂幼鱼生长、血清游离精氨酸和赖氨酸、血液生化及免疫指标的影响[J]. 中国水产科学, 2014, 21(3): 549−559.

    Liao Yingjie, Liu Bo, Ren Mingchun, et al. Effects of dietary arginine level on growth performance, free essential amino acids, hematological characteristics, and immune response in juvenile blunt snout bream (Megalobrama amblycephala)[J]. Journal of Fishery Sciences of China, 2014, 21(3): 549−559.
    [21] 丁洛阳, 梁祥焕, 王梦芝, 等. 颈静脉灌注精氨酸对泌乳中期奶牛血清生化和免疫指标的影响[J]. 动物营养学报, 2016, 28(6): 1899−1906.

    Ding Luoyang, Liang Xianghuan, Wang Mengzhi, et al. Effects of arginine infusion through jugular vein on serum biochemical and immune indices of dairy cows at mid-lactation[J]. Chinese Journal of Animal Nutrition, 2016, 28(6): 1899−1906.
    [22] 袁慧坤, 袁文华, 赵文文, 等. 丁酸梭菌和地衣芽孢杆菌对北京鸭生长性能、血清生化和免疫指标及免疫器官指数的影响[J]. 动物营养学报, 2018, 30(11): 4635−4641. doi: 10.3969/j.issn.1006-267x.2018.11.040

    Yuan Huikun, Yuan Wenhua, Zhao Wenwen, et al. Effects of Clostridium butyricum and Bacillus licheniformis on growth performance, serum biochemical and immune indexes, and immune organ indexes of Beijing ducks[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4635−4641. doi: 10.3969/j.issn.1006-267x.2018.11.040
    [23] 程民杰, 黄亚东, 徐文敏, 等. 离水操作胁迫对红鳍东方鲀血清生化指标的影响[J]. 水产科学, 2015, 34(4): 227−231.

    Cheng Minjie, Huang Yadong, Xu Wenmin, et al. Effects of handling stress out of water on serum parameters in tiger puffer Takifugu rubripes[J]. Fisheries Science, 2015, 34(4): 227−231.
    [24] 周萌, 吴灶和, 梁日深, 等. 急性降温对凡纳滨对虾血液生化指标及细胞免疫指标的影响[J]. 广东农业科学, 2015, 42(24): 134−139.

    Zhou Meng, Wu Zaohe, Liang Rishen, et al. Biochemical and cellular immunological responses of Pacific white shrimp, Litopenaeus vannamei to cold shock[J]. Guangdong Agricultural Sciences, 2015, 42(24): 134−139.
    [25] 常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报, 2018, 48(7): 20−28.

    Chang Zhicheng, Wen Haishen, Zhang Meizhao, et al. Effects of dissolved oxygen levels on oxidative stress response and energy utilization of juvenile Chinese sea bass (Lateolabrax maculatus) and associate physiological mechanisms[J]. Periodical of Ocean University of China, 2018, 48(7): 20−28.
    [26] 刘思迅, 周胜杰, 韩明洋, 等. 密度胁迫对卵形鲳鲹鱼苗运输水质、存活率、免疫酶活力和血清指标的影响[J]. 海洋科学, 2019, 43(4): 70−80. doi: 10.11759/hykx20181021001

    Liu Sixun, Zhou Shengjie, Han Mingyang, et al. Effects of density stress on water quality, survival rate, immune enzyme activities, and serotonation index of Trachinotus ovatus[J]. Marine Sciences, 2019, 43(4): 70−80. doi: 10.11759/hykx20181021001
    [27] 郑鑫, 殷海成, 李昕硕, 等. β-伴大豆球蛋白对幼鲤生长、血清生化及免疫指标的影响[J]. 中国饲料, 2018(21): 46−52.

    Zheng Xin, Yin Haicheng, Li Xinshuo, et al. Growth and serum biochemical and immunological responses of juvenile carp (Cyprinus carpiohaematopterus) to increasing dietary concentrations of β-conglycinin[J]. China Feed, 2018(21): 46−52.
    [28] 吴桐强, 钟蕾, 刘庄鹏, 等. 谷氨酰胺二肽对草鱼幼鱼生长、血清生化、免疫指标及肠道组织结构的影响[J]. 动物营养学报, 2019, 31(8): 3682−3689.

    Wu Tongqiang, Zhong Lei, Liu Zhuangpeng, et al. Effects of glutamine dipeptide on growth, serum biochemistry, immunity indexes and intestinal morphology of juvenile grass carp (Ctenopharyngodon idellus)[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3682−3689.
    [29] 高权新, 谢明媚, 彭士明, 等. 急性温度胁迫对银鲳幼鱼代谢酶、离子酶活性及血清离子浓度的影响[J]. 南方水产科学, 2016, 12(2): 59−66.

    Gao Quanxin, Xie Mingmei, Peng Shiming, et al. Effect of acute temperature stress on metabolic enzymes, ion enzymes and concentration of ion in serum of juvenile Pampus argenteus[J]. South China Fisheries Science, 2016, 12(2): 59−66.
    [30] 区又君, 范春燕, 李加儿, 等. 急性低氧胁迫对卵形鲳鲹选育群体血液生化指标的影响[J]. 海洋学报, 2014, 36(4): 126−131.

    Qu Youjun, Fan Chunyan, Li Jia’er, et al. Acute hypoxia stress on blood biochemical indexes in selective group of Trachinotus ovatus[J]. Haiyang Xuebao, 2014, 36(4): 126−131.
    [31] 林浩然. 鱼类生理学[M]. 广州: 广东高等教育出版社, 1999: 123.

    Lin Haoran. Fish Physiology[M]. Guangzhou: Guangdong Higher Education Press, 1999: 123.
    [32] 朱文彬, 刘浩亮, 陈作志, 等. 低温胁迫对马来西亚红罗非鱼血清生化指标的影响[J]. 水产学杂志, 2013, 26(5): 16−20.

    Zhu Wenbin, Liu Haoliang, Chen Zuozhi, et al. Effects of cooling temperature stress on serum biochemical indexes in Malaysian red tilapia (Oreochromis mossambicus×O. niloticus)[J]. Chinese Journal of Fisheries, 2013, 26(5): 16−20.
    [33] 陈超, 施兆鸿, 薛宝贵, 等. 低温胁迫对七带石斑鱼幼鱼血清生化指标的影响[J]. 水产学报, 2012, 36(8): 1249−1255. doi: 10.3724/SP.J.1231.2012.27884

    Chen Chao, Shi Zhaohong, Xue Baogui, et al. Influence of low-temperature stress on serum biochemical parameters in juvenile Epinephelus septemfasciatus[J]. Journal of Fisheries of China, 2012, 36(8): 1249−1255. doi: 10.3724/SP.J.1231.2012.27884
    [34] 张勇, 徐钢春, 杜富宽, 等. 急性操作胁迫对美洲鲥亲鱼血清生化指标及HSP70基因表达的影响[J]. 上海海洋大学学报, 2016, 25(5): 652−658. doi: 10.12024/jsou.20151201621

    Zhang Yong, Xu Gangchun, Du Fukuan, et al. Effects of acute handling stress on serum biochemical parameters and HSP70 gene expression in Alosa sapidissima broodstocks[J]. Journal of Shanghai Ocean University, 2016, 25(5): 652−658. doi: 10.12024/jsou.20151201621
    [35] 王妤, 庄平, 章龙珍, 等. 盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响[J]. 水产学报, 2011, 35(1): 66−73.

    Wang Yu, Zhuang Ping, Zhang Longzhen, et al. Effects of salinity on survival, growth and antioxidant defense system of Siganus guttatus[J]. Journal of Fisheries of China, 2011, 35(1): 66−73.
    [36] 胡一鸿, 牛健康. 超氧化物歧化酶研究进展[J]. 生物学教学, 2005, 30(1): 2−4.

    Hu Yihong, Niu Jiankang. Progress in superoxide dismutase research[J]. Biology Teaching, 2005, 30(1): 2−4.
    [37] 田照辉, 徐绍刚, 王巍, 等. 急性热应激对西伯利亚鲟HSP70 mRNA表达、血清皮质醇和非特异性免疫的影响[J]. 水生生物学报, 2013, 37(2): 344−350. doi: 10.7541/2013.25

    Tian Zhaohui, Xu Shaogang, Wang Wei, et al. Effects of acute thermal stress on HSP70 mRNA, physiology and nonspecific immunity in siberian sturgeon (Acipenser baerii)[J]. Acta Hydrobiologica Sinica, 2013, 37(2): 344−350. doi: 10.7541/2013.25
    [38] 刘淑兰, 翟少伟. 氧化应激对鱼类的影响及其模型的研究进展[J]. 饲料博览, 2012(2): 48−51. doi: 10.3969/j.issn.1001-0084.2012.02.020

    Liu Shulan, Zhai Shaowei. Research progress of effects of oxidative stress on fish and oxidative stress model[J]. Feed Review, 2012(2): 48−51. doi: 10.3969/j.issn.1001-0084.2012.02.020
    [39] Takahashi Y, Ganster R W, Gambotto A, et al. Role of NF-κB on liver cold ischemia-reperfusion injury[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2002, 283(5): G1175−G1184. doi: 10.1152/ajpgi.00515.2001
    [40] 李俊世, 吴桃, 吕香梅. 黄芪与复方五倍子对草鱼两种免疫酶的影响[J]. 当代畜禽养殖业, 2019(6): 14−16. doi: 10.3969/j.issn.1005-5959.2019.06.007

    Li Junshi, Wu Tao, Lü Xiangmei. Effects of Astragalus membranaceus and Compound Gallnut on two immune enzymes of grass carp (Ctenopharyngodon idellus)[J]. Modern Animal Husbandry, 2019(6): 14−16. doi: 10.3969/j.issn.1005-5959.2019.06.007
    [41] 王冲, 田燚, 常亚青, 等. 盐度胁迫对刺参非特异性免疫酶的影响[J]. 中国农业科技导报, 2013, 15(3): 163−168. doi: 10.3969/j.issn.1008-0864.2013.03.23

    Wang Chong, Tian Yi, Chang Yaqing, et al. Effect of salinity stress on immune enzyme activity of sea cucumber (Apostichopus japonicus)[J]. Journal of Agricultural Science and Technology, 2013, 15(3): 163−168. doi: 10.3969/j.issn.1008-0864.2013.03.23
    [42] Wang Qianfeng, Shen Weiliang, Hou Congcong, et al. Physiological responses and changes in gene expression in the large yellow croaker Larimichthys crocea following exposure to hypoxia[J]. Chemosphere, 2017, 169: 418−427. doi: 10.1016/j.chemosphere.2016.11.099
    [43] Chen Nan, Wu Meng, Tang Guopan, et al. Effects of acute hypoxia and reoxygenation on physiological and immune responses and redox balance of Wuchang bream (Megalobrama amblycephala Yih, 1955)[J]. Frontiers in Physiology, 2017, 8: 375. doi: 10.3389/fphys.2017.00375
  • 加载中
图(5)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  122
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-08-14
  • 网络出版日期:  2021-01-27
  • 刊出日期:  2021-03-02

目录

    /

    返回文章
    返回