留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Himawari-8卫星的逐时次海表温度融合

周旋 叶小敏 周江涛 杨晓峰

周旋,叶小敏,周江涛,等. 基于Himawari-8卫星的逐时次海表温度融合[J]. 海洋学报,2021,43(1):137–146 doi: 10.12284/hyxb2021011
引用本文: 周旋,叶小敏,周江涛,等. 基于Himawari-8卫星的逐时次海表温度融合[J]. 海洋学报,2021,43(1):137–146 doi: 10.12284/hyxb2021011
Zhou Xuan,Ye Xiaomin,Zhou Jiangtao, et al. Hourly sea surface temperature fusion based on Himawari-8 satellite[J]. Haiyang Xuebao,2021, 43(1):137–146 doi: 10.12284/hyxb2021011
Citation: Zhou Xuan,Ye Xiaomin,Zhou Jiangtao, et al. Hourly sea surface temperature fusion based on Himawari-8 satellite[J]. Haiyang Xuebao,2021, 43(1):137–146 doi: 10.12284/hyxb2021011

基于Himawari-8卫星的逐时次海表温度融合

doi: 10.12284/hyxb2021011
基金项目: 国家重点研发计划(2017YFB0502800,2018YFC0213104)
详细信息
    作者简介:

    周旋(1980—),男,河南省信阳市人,博士,主要从事多源海洋遥感资料融合、海面风场反演和海冰遥感监测方面的研究。E-mail:zhouxuan@radi.ac.cn

  • 中图分类号: P731.11

Hourly sea surface temperature fusion based on Himawari-8 satellite

  • 摘要: Himawari-8卫星是日本气象厅发射的新一代地球同步静止气象卫星,为获取逐时次海表温度产品提供了有力数据支持。本文以Himawari-8 AHI海表温度为基础,利用最优插值法融合GCOM-W1 AMSR2海表温度和NERA-GOOS现场观测资料,生成逐时次海表温度融合产品。为了充分利用邻近时刻的海表温度观测资料,利用Himawari-8 AHI海表温度和欧洲中期天气预报中心海面风速数据建立匹配数据集,研究建立海表温度日变化模型,实现邻近时刻海表温度的订正;为了消除多源海表温度间的系统偏差,以Himawari-8 AHI海表温度为目标数据,利用泊松方程对GCOM-W1 AMSR2海表温度进行偏差订正。实验验证结果表明,利用逐时次海表温度融合产品计算的日增温情况与海面风速具有较好的相关性,间接证实了逐时次海表温度融合产品的准确性;另外,逐时次海表温度融合产品与现场观测海表温度的偏差为0.09℃、均方根误差为0.89℃,二者具有较好的一致性,说明逐时次海表温度融合产品具有较高的精度。
  • 图  1  海表温度融合流程

    Fig.  1  The flow of sea surface temperature fusion

    图  2  海表温度日变化情况(以2017年10月5日8.04°N,143.00°E海表温度变化为例)

    Fig.  2  The daily variation of sea surface temperature at 8.04°N, 143.00°E on October 5, 2017

    图  3  海表温度日变化幅度随太阳辐照度的变化

    Fig.  3  The amplitude of diurnal sea surface temperature variation with solar irradiance

    图  4  海表温度日变化幅度随海面风速的变化

    Fig.  4  The amplitude of diurnal sea surface temperature variation with wind speed

    图  5  Himawari-8 AHI和GCOM-W1 AMSR2海表温度的拼接产品(28.8°~31.2°N,123.2°~126.2°E)

    Fig.  5  The mosaic sea surface temperature from Himawari-8 AHI and GCOM-W1 AMSR2 at 28.8°−31.2°N and 123.2°−126.2°E

    图  6  Himawari-8 AHI和GCOM-W1 AMSR2海表温度的拼接产品(29.8°N)

    Fig.  6  The mosaic sea surface temperature from Himawari-8 AHI and GCOM-W1 AMSR2 at 29.8°N

    图  7  2017年4月初估场误差协相关的${{\lambda _x}}$(a)、${{\lambda _y}}$(b)和A(c)

    Fig.  7  The ${{\lambda _x}}$(a), ${{\lambda _y}}$(b), and $ A$ (c) of the estimated initial field in April 2017

    图  8  经日变化订正、偏差订正后的海表温度观测数据(a)和最优插值海表温度融合产品(b)

    Fig.  8  The observed sea surface temperature using the diurnal variation and bias corrections(a), and the fused sea surface temperature using the optimal interpolation(b)

    图  9  2017年8月17日00:00时(a)和14:00时(b)的海表温度融合结果及日增温情况(c)

    Fig.  9  The daily warming of sea surface temperature (c) and the fusion products of sea surface temperature at 00:00 (a) and 14:00 (b) on August 17, 2017

    图  10  2017年8月17日14:00时的CCMP海面风速

    Fig.  10  The CCMP sea surface wind speed at 14:00 on August 17, 2017

    图  11  海表温度融合结果精度检验

    a. 现场观测与融合海表温度的散点图;b. 现场观测与融合海表温度偏差的直方图

    Fig.  11  The validation of sea surface temperature fusion products

    a. Scatter plot of in situ data versus sea surface temperature fusion products; b. histogram of the bias between in situ data minus sea surface temperature fusion products

  • [1] Eliassen A, Sawyer J S, Smagorinsky J. Upper air network requirements for numerical weather prediction[R]. Technical Note No 29. Geneva: World Meteorological Organization, 1954.
    [2] Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994, 7(6): 929−948.
    [3] Reynolds R W. A real-time global sea surface temperature analysis[J]. Journal of Climate, 1988, 1(1): 75−87.
    [4] Reynolds R W, Rayner N A, Smith T M, et al. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate, 2002, 15(13): 1609−1625.
    [5] Reynolds R W, Smith T M, Liu C Y, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496.
    [6] 吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.

    Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
    [7] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35−45.
    [8] Kurihara Y, Murakami H, Kachi M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite[J]. Geophysical Research Letters, 2016, 43(3): 1234−1240.
    [9] Hihara T, Kubota M, Okuro A. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products[J]. Remote Sensing of Environment, 2015, 164: 170−178.
    [10] Gentemann C L, Donlon C J, Stuart-Menteth A, et al. Diurnal signals in satellite sea surface temperature measurements[J]. Geophysical Research Letters, 2003, 30(3): 1140.
    [11] Liou K N. An Introduction to Atmospheric Radiation[M]. 2nd. Amsterdam Boston: Academic Press, 2002.
    [12] Pérez P, Gangnet M, Blake A. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3): 313−318.
    [13] 葛仕明, 程义民, 曾丹, 等. 基于梯度场整体变分模型的无缝图像处理方法[J]. 中国科学院研究生院学报, 2006, 23(5): 665−670. doi: 10.3969/j.issn.1002-1175.2006.05.016

    Ge Shiming, Cheng Yimin, Zeng Dan, et al. Seamless image processing based on gradient field total variation model[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(5): 665−670. doi: 10.3969/j.issn.1002-1175.2006.05.016
    [14] 徐旭光. 基于有限差分法的泊松方程算法研究与软件实现[D]. 成都: 电子科技大学, 2011.

    Xu Xuguang. Research and software implementation of Poisson equation algorithm based on the finite-difference method[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
  • 加载中
图(11)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  95
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-01-06
  • 网络出版日期:  2021-02-24
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回