留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机载LiDAR测深水体波形的漫衰减系数提取方法

亓超 周丰年 吴敬文 宿殿鹏 王贤昆 阳凡林

亓超,周丰年,吴敬文,等. 基于机载LiDAR测深水体波形的漫衰减系数提取方法[J]. 海洋学报,2021,43(1):147–154 doi: 10.12284/hyxb2021005
引用本文: 亓超,周丰年,吴敬文,等. 基于机载LiDAR测深水体波形的漫衰减系数提取方法[J]. 海洋学报,2021,43(1):147–154 doi: 10.12284/hyxb2021005
Qi Chao,Zhou Fengnian,Wu Jingwen, et al. Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform [J]. Haiyang Xuebao,2021, 43(1):147–154 doi: 10.12284/hyxb2021005
Citation: Qi Chao,Zhou Fengnian,Wu Jingwen, et al. Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform [J]. Haiyang Xuebao,2021, 43(1):147–154 doi: 10.12284/hyxb2021005

基于机载LiDAR测深水体波形的漫衰减系数提取方法

doi: 10.12284/hyxb2021005
基金项目: 国家自然科学基金(41930535, 41830540, 52001189);国家重点研发计划(2017YFC1405006, 2018YFF0212203, 2018YFC1405900, 2016YFC1401210);山东科技大学科研创新团队支持计划(2019TDJH103)。
详细信息
    作者简介:

    亓超(1994-),男,山东省莱芜市人,博士生,主要从事机载激光测深及其数据处理方面的研究工作。E-mail:qichoice007@sdust.edu.cn

    通讯作者:

    阳凡林(1974-),男,湖北省荆州市人,教授,主要从事海底地形测量和海洋定位导航方面的研究工作。E-mail:flyang@sdust.edu.cn

  • 中图分类号: P229;P714.1

Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform

  • 摘要: 漫衰减系数是一个重要的海洋光学参数,能够为水体环境变化、水质分析以及水产养殖等方面提供基础性数据。针对目前船载实地测量效率与分辨率低、卫星遥感反演精度与分辨率较低的局限性,本文提出一种基于机载LiDAR测深水体波形的漫衰减系数提取方法。该方法首先通过分层异构模型的机载LiDAR波形分解算法得到水体散射回波,利用激光在水体中的衰减特性,构建漫衰减系数提取模型,最终获取大面积水域漫衰减系数的空间分布。采用西沙甘泉岛与江苏连云港两个航次的实测数据对所提算法进行了验证,本算法无需每个测深点的水底底部回波强度和深度即可反演得到漫衰减系数,并且在浑浊水域也可取得较好的效果,表明在中国近海利用机载LiDAR测深系统能够有效获取高精度的漫衰减系数。
  • 图  1  本文方法流程图

    Fig.  1  Flow diagram of the new method in this study

    图  2  机载LiDAR测深波形示意图

    Fig.  2  Airborne LiDAR bathymetric waveform

    图  3  双指数函数分解水体散射回波示意图

    Fig.  3  Decomposition of water column contribution by double-exponential function

    图  4  研究区域位置

    a. 西沙甘泉岛;b. 江苏连云港沿岸

    Fig.  4  Location of the study areas

    a. Ganquan Island in the Xisha Archipelago;b. Jiangsu Lianyungang’s seacoast

    图  5  波形处理结果

    a. 连云港波形去噪结果;b. 连云港波形分解结果;c. 甘泉岛波形去噪结果;d. 甘泉岛波形分解结果

    Fig.  5  Waveform processing results

    a. Waveform denoising results of the Lianyungang’s seacoast;b. waveform decomposition results of the Lianyungang’s seacoast;c. waveform denoising results of the Ganquan Island;d. waveform decomposition results of the Ganquan Island

    图  6  甘泉岛西南角样本区域空间分布

    a. 样本区域(红框);b. 水深值;c. 漫衰减系数

    Fig.  6  Distribution of the sample area in the Ganquan Island

    a. Sample area marked by the red box;b. depth;c. diffuse attenuation coefficient

    图  7  甘泉岛西南角样本区域Kd值频率分布直方图

    Fig.  7  Frequency distribution histogram of Kd in the Ganquan Island

    图  8  连云港Kd值频率分布直方图

    Fig.  8  Frequency distribution histogram of Kd in the Lianyungang’s seacoast

    表  1  Aquarius与CZMIL的技术参数

    Tab.  1  Technical parameters of Aquarius and CZMIL

    航次甘泉岛连云港
    ALB名称AquariusCZMIL
    波段Green: 532 nmIR:1064 nm Green: 532 nm
    脉冲频率70 kHz70 kHz (浅水),10 kHz (深水)
    作业航高300~500 m400 m
    最大探测深度20 mKd·DMAX = 3.75~4.0
    (白天,海底反射率>15%)
    最小探测深度 <0.15 m
    扫描天底角15°20°
      注:“−”表示“无数据”。
    下载: 导出CSV

    表  2  分解算法性能指标

    Tab.  2  Performance indexes of waveform fitting algorithm

    航次指标最小值最大值平均值
    连云港RMSE7.422315.578010.0197
    R20.86570.99750.9945
    甘泉岛RMSE1.844013.10717.4710
    R20.97990.99970.9947
    下载: 导出CSV

    表  3  漫衰减系数提取结果

    Tab.  3  Extraction results of diffuse attenuation coefficient

    航次区块传统方法漫衰减系数/m−1文中算法漫衰减系数/m−1
    甘泉岛A0.206 50.215 6
    B0.205 20.245 3
    连云港A0.365 10.378 8
    B0.362 60.381 1
    下载: 导出CSV

    表  4  漫衰减系数与水质之间的关系[25]

    Tab.  4  Relationship between diffuse attenuation coefficient and water quality[25]

    水质典型海域Kd(532)/m−1
    夏威夷、巴哈马群岛、佛罗里达东海岸<0.08
    较好佛罗里达西海岸、韩国东海岸0.08~0.2
    较浑浊日本沿海0.2~0.4
    非常浑浊密西西比海湾,东海>0.4
    下载: 导出CSV
  • [1] Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. San Diego, CA, USA: Academic Press, 1994.
    [2] Philips D M, Abbot R H, Penny M F. Remote sensing of sea water turbidity with an airborne laser system[J]. Journal of Physics D: Applied Physics, 1984, 17(8): 1749−1758.
    [3] Gomes A C C, Bernardo N, Do Carmo A C, et al. Diffuse attenuation coefficient retrieval in CDOM dominated inland water with high chlorophyll-a concentrations[J]. Remote Sensing, 2018, 10(7): 1063.
    [4] Guenther G C. Airborne laser hydrography: system design and performance factors, NOAA Professional Paper Series National Ocean Service 1[R]. Rockville, MD: National Oceanic and Atmospheric Administration, 1985.
    [5] Smart J H, Kwon K H. Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles[C]//CIS Selected Papers: Laser Remote Sensing of Natural Waters: From Theory to Practice. Washington, DC, USA: International Society for Optics and Photonics, 1996, 2964: 100-109.
    [6] Gordon H R, Smith R C, Ronald J, et al. Introduction to ocean optics[C]//Proceedings of SPIE 0489, Ocean Optics VI. Monterey, CA: SPIE, 1980: 14−55.
    [7] 李凯, 童晓冲, 张永生, 等. 黄海、东海区域漫衰减系数光谱遥感反演及激光测深性能评估[J]. 遥感学报, 2015, 19(5): 761−769.

    Li Kai, Tong Xiaochong, Zhang Yongsheng, et al. Inversion of diffuse attenuation coefficient spectral in the Yellow Sea/East China Sea and evaluation of laser bathymetric performance[J]. Journal of Remote Sensing, 2015, 19(5): 761−769.
    [8] 蒋兴伟, 何贤强, 林明森, 等. 中国海洋卫星遥感应用进展[J]. 海洋学报, 2019, 41(10): 113−124.

    Jiang Xingwei, He Xianqiang, Lin Mingsen, et al. Progresses on ocean satellite remote sensing application in China[J]. Haiyang Xuebao, 2019, 41(10): 113−124.
    [9] Billard B, Abbot R H, Penny M F. Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder[J]. Applied Optics, 1986, 25(13): 2080−2088.
    [10] Ding Kai, Wang Chisheng, Tao Ming, et al. A new algorithm for retrieving diffuse attenuation coefficient based on big LiDAR bathymetry data[C]//International Symposium on Cyberspace Safety and Security. Cham: Springer, 2019: 133−142.
    [11] Yang Anxiu, Wu Ziyin, Yang Fanlin, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 49−61.
    [12] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌−探测处理理论与技术[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High-Resolution Submarine Topography: Theory and Technology for Surveying and Post-Processing[M]. Beijing: Science Press, 2017.
    [13] 吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌−可视计算与科学应用[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Li Shoujun, et al. High-Resolution Submarine Topography: Visual Computation and Scientific Applications[M]. Beijing: Science Press, 2017.
    [14] Su Dianpeng, Yang Fanlin, Ma Yue, et al. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 815−828.
    [15] 亓超, 宿殿鹏, 王贤昆, 等. 基于分层异构模型的机载激光测深波形拟合算法[J]. 红外与激光工程, 2019, 48(2): 206004.

    Qi Chao, Su Dianpeng, Wang Xiankun, et al. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model[J]. Infrared and Laser Engineering, 2019, 48(2): 206004.
    [16] Rees W G. Physical Principles of Remote Sensing[M]. Cambridge: Cambridge University Press, 2012.
    [17] Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744−748.
    [18] 孙磊, 张志利, 谭立龙, 等. 采用小波阈值的时变光栅莫尔信号去噪方法[J]. 红外与激光工程, 2010, 39(3): 576−580. doi: 10.3969/j.issn.1007-2276.2010.03.040

    Sun Lei, Zhang Zhili, Tan Lilong, et al. Denoising method of dynamic grating Moiré signal based on wavelet threshold[J]. Infrared and Laser Engineering, 2010, 39(3): 576−580. doi: 10.3969/j.issn.1007-2276.2010.03.040
    [19] 刘永明, 邓孺孺, 秦雁, 等. 机载激光雷达测深数据处理与应用[J]. 遥感学报, 2017, 21(6): 982−995.

    Liu Yongming, Deng Ruru, Qin Yan, et al. Data processing methods and applications of airborne LiDAR bathymetry[J]. Journal of Remote Sensing, 2017, 21(6): 982−995.
    [20] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989−1996.
    [21] Ding Kai, Li Qingquan, Zhu Jiasong, et al. An improved quadrilateral fitting algorithm for the water column contribution in airborne bathymetric lidar waveforms[J]. Sensors, 2018, 18(2): 552.
    [22] Abdallah H, Bailly J S, Baghdadi N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 202−216.
    [23] Abady L, Bailly J S, Baghdadi N, et al. Assessment of quadrilateral fitting of the water column contribution in lidar waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 813−817.
    [24] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211−220.
    [25] Ramnath V, Feygels V, Kalluri H, et al. CZMIL (Coastal Zone Mapping and Imaging Lidar) bathymetric performance in diverse littoral zones[C]//OCEANS 2015-MTS/IEEE Washington. Washington, DC, USA: IEEE, 2015: 1−10.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  57
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-06-28
  • 网络出版日期:  2020-12-30
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回