留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆架斜坡对内孤立波的动力响应特性试验研究

李逸冰 刘乐军 高珊 张毅 熊学军

李逸冰,刘乐军,高珊,等. 陆架斜坡对内孤立波的动力响应特性试验研究[J]. 海洋学报,2021,43(3):126–134 doi: 10.12284/hyxb2021001
引用本文: 李逸冰,刘乐军,高珊,等. 陆架斜坡对内孤立波的动力响应特性试验研究[J]. 海洋学报,2021,43(3):126–134 doi: 10.12284/hyxb2021001
Li Yibing,Liu Lejun,Gao Shan, et al. Experimental study on dynamic response characteristics of continental shelf slope to internal solitary waves[J]. Haiyang Xuebao,2021, 43(3):126–134 doi: 10.12284/hyxb2021001
Citation: Li Yibing,Liu Lejun,Gao Shan, et al. Experimental study on dynamic response characteristics of continental shelf slope to internal solitary waves[J]. Haiyang Xuebao,2021, 43(3):126–134 doi: 10.12284/hyxb2021001

陆架斜坡对内孤立波的动力响应特性试验研究

doi: 10.12284/hyxb2021001
基金项目: 全球变化与海气相互作用专项(GASI-GEOGE-05-03);国家自然科学基金面上项目(4876061)
详细信息
    作者简介:

    李逸冰(1996—),男,山东省潍坊市人,从事海洋灾害地质与工程地质方面研究。E-mail:yibing_l@163.com

    通讯作者:

    刘乐军,男,研究员,主要从事海洋灾害地质与工程地质方面研究。E-mail:liulj@fio.org.cn

  • 中图分类号: P731.2

Experimental study on dynamic response characteristics of continental shelf slope to internal solitary waves

  • 摘要: 针对内孤立波在行进过程中遇到海底斜坡会对海底产生力的作用,不同坡度斜坡对内孤立波的动力响应应该存在差异。本文通过水槽中制造内波,对不同角度的斜坡对内孤立波的动力响应过程进行了研究。结果表明,内孤立波通过陆架斜坡上方,会造成斜坡沉积物超孔隙水压力的积累;在相同振幅条件下,缓坡沉积物动力响应的幅度比陡坡沉积物大;随着振幅的增加,缓坡发生动力破坏程度大于陡坡;在斜坡沉积物稳定性受到破坏之前,超孔隙水压力的积累和释放同时存在,内孤立波振幅的增大会加剧超孔隙水压力的释放。该结果对于斜坡沉积物在内孤立波作用下失稳破坏的动力学研究和斜坡稳定性分析将起到指导作用。
  • 图  1  实验水槽设计示意图

    Fig.  1  Schematic diagram of experimental water sink design

    图  2  实验用土粒径级配曲线

    Fig.  2  Gradation curve of soil particle size for experiment

    图  3  斜坡坡形及传感器布置示意图

    Fig.  3  Schematic diagram of slope shape and sensor layout

    图  4  振幅为12 cm时不同坡度坡脚与坡中处超孔隙水压力时程曲线

    Fig.  4  Time-history curve of excess pore water pressure at the toe of different slopes and the middle of the slope with an amplitude of 12 cm

    图  5  振幅15 cm内孤立波破碎引起9°斜坡坡顶沉积物悬浮

    Fig.  5  Breaking of solitary waves within 15 cm amplitude causes suspension of 9° slope top sediment

    图  6  振幅15 cm时9°斜坡坡顶超孔隙水压力时程曲线

    Fig.  6  Time-history curve of excess pore water pressure at the top of 9° slope with an amplitude of 15 cm

    图  7  不同振幅作用下3°斜坡坡脚与坡中处超孔隙水压力时程曲线

    Fig.  7  Time-history curve of excess pore water pressure at the foot of the slope and the middle of the slope under different amplitudes

    图  8  模拟内波通过各角度斜坡坡脚处的孔压响应时程曲线

    Fig.  8  Time history curve of pore pressure response of simulated internal waves passing through the slope toe of various angles

    图  9  不同振幅作用下不同坡度坡脚和坡中超孔压响应对比曲线

    Fig.  9  Comparison curves of response of excess pore pressure in toe slopes with different slopes under different amplitudes

    图  10  不同振幅作用下9°坡超孔隙水压力时程曲线

    Fig.  10  Time-history curve of 9° slope excess pore water pressure under different amplitudes

    图  11  不同振幅作用下6°坡坡脚超孔隙水压力时程曲线

    Fig.  11  Time-history curve of excess pore water pressure at the foot of the 6° slope under different amplitudes

    图  12  不同振幅作用下3°斜坡坡脚与坡中处表面压强变化对比曲线

    Fig.  12  Comparison curves of surface pressure changes at the toe of the 3° slope and the middle of the slope under different amplitudes

    表  1  实验室模拟内孤立波的设计参数

    Tab.  1  Design parameter of laboratory simulation internal solitary wave

    振幅/cm上层流体密度${\rho _1}$/(kg·m−3下层流体密度${\rho _2}$/(kg·m−3
    129981020
    149981024
    159981028
    下载: 导出CSV
  • [1] 方文东, 陈荣裕, 毛庆文. 南海北部大陆坡区的突发性强流[J]. 热带海洋, 2000, 19(1): 70−75.

    Fang Wendong, Chen Rongyu, Mao Qingwen. Abrupt strong currents over continental slope of northern South China Sea[J]. Tropic Oceanology, 2000, 19(1): 70−75.
    [2] Lamb K G. Internal wave breaking and dissipation mechanisms on the continental slope/shelf[J]. Annual Review of Fluid Mechanics, 2014, 46: 231−254. doi: 10.1146/annurev-fluid-011212-140701
    [3] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399
    [4] 夏华永, 刘愉强, 杨阳. 南海北部沙波区海底强流的内波特征及其对沙波运动的影响[J]. 热带海洋学报, 2009, 28(6): 15−22. doi: 10.3969/j.issn.1009-5470.2009.06.003

    Xia Huayong, Liu Yuqiang, Yang Yang. Internal-wave characteristics of strong bottom currents at the sand-wave zone of the northern South China Sea and its role in sand-wave motion[J]. Journal of Tropical Oceanography, 2009, 28(6): 15−22. doi: 10.3969/j.issn.1009-5470.2009.06.003
    [5] Droghei R, Falcini F, Casalbore D, et al. The role of internal solitary waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait[J]. Scientific Reports, 2016, 6: 36376. doi: 10.1038/srep36376
    [6] Rivera-Rosario G A, Diamessis P J, Jenkins J T. Bed failure induced by internal solitary waves[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5468−5485. doi: 10.1002/2017JC012935
    [7] 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6): 40−45.

    Chen Shanshan, Sun Yunbao, Wu Shiguo. Sea bottom landslide in the Shenhu area on the north margin of South China Sea and triggering mechanisms[J]. Marine Geology Letters, 2012, 28(6): 40−45.
    [8] Boegman L, Stastna M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics, 2019, 51: 129−154. doi: 10.1146/annurev-fluid-122316-045049
    [9] Puig P, Palanques A, Guillén J, et al. Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: implications for continental margin shaping[J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09011.
    [10] Quaresma L S, Vitorino J, Oliveira A, et al. Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf[J]. Marine Geology, 2007, 246(2/4): 123−143.
    [11] Tian Zhuangcai, Jia Yonggang, Zhang Shaotong, et al. Bottom and intermediate nepheloid layer induced by shoaling internal solitary waves: impacts of the angle of the wave group velocity vector and slope gradients[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5686−5699. doi: 10.1029/2018JC014721
    [12] Jia Yonggang, Tian Zhuangcai, Shi Xuefa, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 12137. doi: 10.1038/s41598-019-47886-y
    [13] Cacchione D A, Drake D E. Nepheloid layers and internal waves over continental shelves and slopes[J]. Geo-Marine Letters, 1986, 6(3): 147−152. doi: 10.1007/BF02238085
    [14] Stastna M, Lamb K G. Sediment resuspension mechanisms associated with internal waves in coastal waters[J]. Journal of Geophysical Research: Oceans, 2008, 113(C10): C10016. doi: 10.1029/2007JC004711
    [15] Butman B, Alexander P S, Scotti A, et al. Large internal waves in Massachusetts Bay transport sediments offshore[J]. Continental Shelf Research, 2006, 26(17/18): 2029−2049.
    [16] Slinn D N, Riley J J. Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain[J]. Dynamics of Atmospheres and Oceans, 1996, 24(1/4): 51−62.
    [17] Klymak J M, Moum J N. Internal solitary waves of elevation advancing on a shoaling shelf[J]. Geophysical Research Letters, 2003, 30(20): 2045.
    [18] Nakayama K, Shintani T, Kokubo K, et al. Residual currents over a uniform slope due to breaking of internal waves in a two-layer system[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10002.
    [19] Pomar L, Morsilli M, Hallock P, et al. Internal waves, an under-explored source of turbulence events in the sedimentary record[J]. Earth-Science Reviews, 2012, 111(1/2): 56−81.
    [20] Morsilli M, Pomar L. Internal waves vs. surface storm waves: a review on the origin of hummocky cross-stratification[J]. Terra Nova, 2012, 24(4): 273−282. doi: 10.1111/j.1365-3121.2012.01070.x
    [21] 乔路正, 郭秀军, 田壮才, 等. 内孤立波浅化破碎过程斜坡沉积物孔压响应特征实验分析[J]. 海洋学报, 2018, 40(1): 68−76.

    Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al. Experimental analysis of pore pressure response characteristics of slope sediments during shallowing and breaking of internal solitary waves[J]. Haiyang Xuebao, 2018, 40(1): 68−76.
    [22] Forgia G L, Adduce C, Falcini F. Laboratory investigation on internal solitary waves interacting with a uniform slope[J]. Advances in Water Resources, 2017, 120: 4−18.
    [23] 杜辉, 魏岗, 张原铭, 等. 内孤立波沿缓坡地形传播特性的实验研究[J]. 物理学报, 2013, 62(6): 64704-1−064704-8.

    Du Hui, Wei Gang, Zhang Yuanming, et al. Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope[J]. Acta Physica Sinica, 2013, 62(6): 64704-1−064704-8.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  144
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-11-04
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回