留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海南岛西部近岸海底沙波几何参数及其与环境变量的关联性分析

何艺玮 马小川 高敏 龚腾

何艺玮,马小川,高敏,等. 海南岛西部近岸海底沙波几何参数及其与环境变量的关联性分析[J]. 海洋学报,2024,46(x):1–12 doi: 10.12284/hyxb0000-00
引用本文: 何艺玮,马小川,高敏,等. 海南岛西部近岸海底沙波几何参数及其与环境变量的关联性分析[J]. 海洋学报,2024,46(x):1–12 doi: 10.12284/hyxb0000-00
He Yiwei,Ma Xiaochuan,Gao Min, et al. Analysis of geometric parameters of submarine sand waves in the western coastal area of Hainan Island and their correlation with environmental variables[J]. Haiyang Xuebao,2024, 46(x):1–12 doi: 10.12284/hyxb0000-00
Citation: He Yiwei,Ma Xiaochuan,Gao Min, et al. Analysis of geometric parameters of submarine sand waves in the western coastal area of Hainan Island and their correlation with environmental variables[J]. Haiyang Xuebao,2024, 46(x):1–12 doi: 10.12284/hyxb0000-00

海南岛西部近岸海底沙波几何参数及其与环境变量的关联性分析

doi: 10.12284/hyxb0000-00
基金项目: 国家自然科学基金(42276057,41876035)。
详细信息
    作者简介:

    何艺玮(1999—),女,江苏省张家港市人,主要从事海底地形地貌与海洋沉积动力学研究。E-mail:hyw@qdio.ac.cn

    通讯作者:

    马小川(1985—),男,研究员,主要从事海底地形地貌与海洋沉积动力学研究。E-mail:mxch@qdio.ac.cn

Analysis of geometric parameters of submarine sand waves in the western coastal area of Hainan Island and their correlation with environmental variables

  • 摘要: 在发育复杂海底沙波的海域,对整个海域沙波几何参数空间分布规律的定量研究较为少见,且沙波复杂几何参数与环境变量的关联性尚未厘清。基于海南岛西部实测水深数据、沉积物粒度数据和流速数据,量化和提取了研究区的环境变量;并利用沙丘参数自动提取和分析方法计算了复杂海底沙波的形态参数,分析了沙波几何参数之间及其与环境变量的相关性。结果表明:研究区海底沙波形态特征复杂多变,平均波长范围为64~340 m,平均波高为0.39~4.13 m。波高与陡峭度、背流面平均角度存在强正相关性,波长与对称度之间存在强正相关性,沉积物中值粒径与背流面平均角度和波高之间存在较强正相关性。研究区海底沙波的发育特征受水深的影响较小。潮流作用下沉积物运移方式以推移质运移为主,海底沙波受到的侵蚀作用较弱;沙波演化以垂向生长和迁移为主,沙波波高增长优先于波长增大。在稳定潮流背景下,区域沉积物供应以及沉积物粒度均能影响海底沙波的规模。
  • 图  1  研究区域位置(a)及研究区域地形及取样点位置(b)

    Fig.  1  Location of the study area (a) and study area topography and sampling point locations (b)

    图  2  研究区域地形区块划分(a)(取样点位置与图1b一致;标红区块编号与讨论部分一致,分别为C6、D5、G6和H6);研究区域流速分布(b)

    Fig.  2  Division of the study area into topographic blocks (a) (the location of sampling points is consistent with Fig. 1b; the highlighted block numbers are consistent with the discussion section, namely C6, D5, G6, and H6); flow velocity in the study area (b)

    图  3  典型区块沙波脊线

    a. D1区块沙波脊线;b. H2区块沙波脊线;c. F3区块沙波脊线;d. G3区块沙波脊线。其中,D1和H2区块沙波脊线走向为NWW–SEE;F3和G3区块沙波脊线走向为SWW–NEE

    Fig.  3  Sand wave crest lines in typical blocks

    a. Crest lines in block D1; b. crest lines in block H2; c. crest lines in block F3; d. crest lines in block G3. The crest lines in blocks D1 and H2 trend NWW–SEE, while the crest lines in blocks F3 and G3 trend SWW–NEE

    图  4  沙波参数

    Fig.  4  Sand wave parameters

    图  5  研究区域主要环境变量的分布特征

    红色框线显示区块与讨论部分一致,分别为C6、D5、G6和H6。a. 水深分布;b. 流速分布;c. 中值粒径分布

    Fig.  5  Distribution of the main environmental variables in the study area

    The red box indicates the blocks that correspond to the discussion section, namely C6, D5, G6, and H6. a. Distribution of water depth; b. distribution of flow velocity; c. distribution of median grain size

    图  6  研究区域沙波几何参数分布特征

    红色框线显示区块与讨论部分一致,分别为C6、D5、G6和H6。a. 波长分布;b. 波高分布;c. 对称度分布;d. 陡峭度分布;e. 背流面平均角度分布

    Fig.  6  Distribution of geometric characteristics of sand waves in the study area

    The red box indicates the blocks that correspond to the discussion section, namely C6, D5, G6, and H6. a. Distribution of wavelength; b. distribution of wave height; c. distribution of sand wave symmetry; d. distribution of sand wave steepness; e. distribution of average angle of the lee side of sand waves

    图  7  沙波各几何参数之间的相关性

    Fig.  7  Correlation between geometric parameters of sand waves

    图  8  主要环境变量与沙波几何参数之间的相关性

    a. 水深与沙波各参数之间的相关性;b. 中值粒径与沙波各参数之间的相关性;c. 流速与沙波各参数之间的相关性

    Fig.  8  Correlation between the main environmental variables and the geometric parameters of sand waves

    a. Correlation between water depth and sand wave parameters; b. correlation between median grain size and sand wave parameters; c. correlation between flow velocity and sand wave parameters

    图  9  中值粒径与波高的散点分布

    红色区域中各区块D50 > 0.4 mm,灰色区域中各区块D50 > 0.5 mm,蓝色虚线为沙丘波高为1.6 m的分界线

    Fig.  9  The scatter distribution of median grain size and wave height

    The red region represents blocks with D50 > 0.4 mm, the gray region represents blocks with D50 > 0.5 mm, and the blue dashed line represents the boundary for sand waves with a wave height of 1.6 m

    图  10  F6–H6沉积物搬运方向(a)及沙波剖面(b–d)

    黑色箭头方向为沉积物运移方向(改编自文献[16]);红色直线对应所取沙波剖面的位置

    Fig.  10  Sediment transport direction in blocks F6–H6 (a); sand wave profiles (b–d)

    The direction of the black arrow indicates the direction of sediment transport (adapted from reference [16]); the red line corresponds to the location of the selected sand wave profile

    表  1  研究区海底沉积物粒度分析表

    Tab.  1  Analysis of sediment grain size in the study area

    取样点大地坐标(X,Y)中值粒径(mm)平均粒径(mm)偏态(Ski)峰态(Kg)
    1234 390.35,2 089 369.640.0180.0170.111.59
    2235 749.38,2 089 300.49
    3236 156.23,2 089 988.770.0350.051-0.060.93
    4237 274.26,2 089 404.451.670.7932.472.15
    5238 645.86,2 089 355.641.2120.5620.150.17
    6239 321.13,2 090 149.120.420.1381.111.31
    7234 594.79,2 088 177.970.4110.3840.282.02
    8236 512.66,2 088 230.151.0690.4180.751.38
    9237 882.27,2 088 408.360.8930.6410.990.71
    10235 597.45,2 087 382.921.8250.8972.2718.79
    11237 029.50,2 087 248.24
    12238 300.83,2 087 306.050.9210.6961.320.72
    13234 112.46,2 086 885.320.3990.2640.482.35
    14235 411.88,2 086 316.781.0121.0480.070.74
    15236 861.26,2 086 283.380.8620.6240.890.66
    16239 536.19,2 087 054.351.3220.554-1.220.19
    17234 473.39,2 085 449.620.4810.488-0.040.74
    18235 933.93,2 085 205.560.4960.2890.522.07
    19238 433.44,2 086 109.930.9510.9833.590.12
    20235 087.54,2 084 265.071.7430.8963.2911.85
    21237 511.41,2 084 651.730.0570.0480.241.08
    22239 268.64,2 085 134.730.9510.7650.861.45
    23234 256.04,2 083 389.001.3540.739-1.230.35
    24236 449.20,2 083 981.860.3460.3460.171.93
    25237 729.99,2 083 445.160.470.3550.560.88
    26238 795.51,2 084 102.130.3310.2830.533.09
    27234 785.21,2 082 652.360.4310.4670.571.27
    28235 792.27,2 083 016.510.1980.0910.580.87
    29236 898.33,2 082 425.010.0370.0360.161.15
    30238 397.08,2 082 632.880.0510.0470.210.99
    下载: 导出CSV
  • [1] Doré A, Bonneton P, Marieu V, et al. Numerical modeling of subaqueous sand dune morphodynamics[J]. Journal of Geophysical Research:Earth Surface, 2016, 121(3): 565−587. doi: 10.1002/2015JF003689
    [2] Best J. The fluid dynamics of river dunes: a review and some future research directions[J]. Journal of Geophysical Research:Earth Surface, 2005, 110(F4): F04S02.
    [3] Ashley G M. Bed forms in the Pitt River, British Columbia[M]//Miall A D. Fluvial Sedimentology. Calgary: Canadian Society of Petroleum Geologists, 1978: 9−104.
    [4] Dalrymple R W. Morphology and internal structure of sandwaves in the Bay of Fundy[J]. Sedimentology, 1984, 31(3): 365−382. doi: 10.1111/j.1365-3091.1984.tb00865.x
    [5] Van Lancker V, Jacobs P. The dynamical behaviour of shallow-marine dunes[M]//Trentesaux A, Garlan T. Proceedings of the International Workshop on Marine Sandwave Dynamics. Lille: University of Lille, 2000.
    [6] Van Landeghem K J J, Wheeler A J, Mitchell N C, et al. Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe[J]. Marine Geology, 2009, 263(1/4): 108−119.
    [7] 陈昌翔, 曹立华, 庄振业, 等. 北部湾东侧莺东沙脊及其在管线工程中的负面作用[J]. 海洋地质前沿, 2018, 34(4): 49−55.

    Chen Changxiang, Cao Lihua, Zhuang Zhenye, et al. Yingdong sand ridges in east Beibu Gulf and their impact on pipeline engineering[J]. Marine Geology Frontiers, 2018, 34(4): 49−55.
    [8] Ma Xiaochuan, Yan Jun, Fan Fengxin. Morphology of submarine barchans and sediment transport in barchans fields off the Dongfang coast in Beibu Gulf[J]. Geomorphology, 2014, 213: 213−224. doi: 10.1016/j.geomorph.2014.01.010
    [9] 郭立, 马小川, 阎军. 北部湾东南海域海底沙波发育分布特征及控制因素[J]. 海洋地质与第四纪地质, 2017, 37(1): 67−76.

    Guo Li, Ma Xiaochuan, Yan Jun. Distribution pattern and control factors of sand waves in southeast Beibu Gulf[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 67−76.
    [10] 李勇航, 牟泽霖, 倪玉根, 等. 海南东方近岸海底活动沙波的地球物理特征及其迁移机制[J]. 海洋地质与第四纪地质, 2021, 41(4): 27−35.

    Li Yonghang, Mu Zelin, Ni Yugen, et al. Geophysical characteristics and migration mechanism of active submarine sand waves off the coast of Dongfang, Hainan[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 27−35.
    [11] Ma Xiaochuan, Yan Jun, Song Yongdong, et al. Morphology and maintenance of steep dunes near dune asymmetry transitional areas on the shallow shelf (Beibu Gulf, northwest South China Sea)[J]. Marine Geology, 2019, 412: 37−52. doi: 10.1016/j.margeo.2019.03.006
    [12] Flemming B W. Zur klassifikation subaquatischer, strömungstransversaler Transportkörper[J]. Bochumer Geologische und Geotechnische Arbeiten, 1988, 29(93/97): 44−47.
    [13] Tuijnder A P, Ribberink J S, Hulscher S J M H. An experimental study into the geometry of supply-limited dunes[J]. Sedimentology, 2009, 56(6): 1713−1727. doi: 10.1111/j.1365-3091.2009.01054.x
    [14] Flemming B W. Comment on “Large-scale bedforms along a tideless outer shelf setting in the western Mediterranean” by Lo Iacono et al. (2010) in Continental Shelf Research vol 30, pp. 1802–1813[J]. Continental Shelf Research, 2013, 52: 203−207. doi: 10.1016/j.csr.2012.11.012
    [15] Wang Yunwei, Yu Qian, Jiao Jian, et al. Coupling bedform roughness and sediment grain-size sorting in modelling of tidal inlet incision[J]. Marine Geology, 2016, 381: 128−141. doi: 10.1016/j.margeo.2016.09.004
    [16] Ma Xiaochuan, Li Jinyuan, Yan Jun, et al. The encountering dune fields in a bidirectional flow system in the northwestern South China Sea: pattern, morphology, and recent dynamics[J]. Geomorphology, 2022, 406: 108210. doi: 10.1016/j.geomorph.2022.108210
    [17] Motamedi A, Afzalimehr H, Singh V P, et al. Experimental study on the influence of dune dimensions on flow separation[J]. Journal of Hydrologic Engineering, 2014, 19(1): 78−86. doi: 10.1061/(ASCE)HE.1943-5584.0000754
    [18] Bartholdy J, Flemming B W, Bartholomä A, et al. Flow and grain size control of depth-independent simple subaqueous dunes[J]. Journal of Geophysical Research:Earth Surface, 2005, 110(F4): F04S16.
    [19] Francken F, Wartel S, Parker R, et al. Factors influencing subaqueous dunes in the Scheldt Estuary[J]. Geo-Marine Letters, 2004, 24(1): 14−21. doi: 10.1007/s00367-003-0154-x
    [20] Venditti J G, Hardy R J, Church M, et al. What is a coherent flow structure in geophysical flow?[M]//Venditti J G, Best J L, Church M, et al. Coherent Flow Structures at Earth's Surface. Hoboken: Wiley Blackwell, 2013: 1−16.
    [21] Bartholdy J, Bartholomae A, Flemming B W. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea[J]. Marine Geology, 2002, 188(3/4): 391−413.
    [22] Damen J M, van Dijk T A G P, Hulscher S J M H. Spatially varying environmental properties controlling observed sand wave morphology[J]. Journal of Geophysical Research:Earth Surface, 2018, 123(2): 262−280. doi: 10.1002/2017JF004322
    [23] Ernstsen V B, Noormets R, Winter C, et al. Development of subaqueous barchanoid‐shaped dunes due to lateral grain size variability in a tidal inlet channel of the Danish Wadden Sea[J]. Journal of Geophysical Research:Earth Surface, 2005, 110(F4): F04S08.
    [24] Wang Li, Yu Qian, Zhang Yongzhan, et al. An automated procedure to calculate the morphological parameters of superimposed rhythmic bedforms[J]. Earth Surface Processes and Landforms, 2020, 45(14): 3496−3509. doi: 10.1002/esp.4983
    [25] Wang Li, Yu Qian, Gao Shu. A combined method to calculate superimposed 2-D dune morphological parameters[C]//Proceedings of the Sixth International Conference on Marine and River Dune Dynamics (MARID VI). 2019: 243−248. (查阅网上资料, 未找到对应的出版者信息, 请确认)[已经将该文献添加在邮件附件, 引用格式为GB/T 7714, 末尾改回了(MARID VI). ]

    Wang Li, Yu Qian, Gao Shu. A combined method to calculate superimposed 2-D dune morphological parameters[C]//Proceedings of the Sixth International Conference on Marine and River Dune Dynamics (MARID VI). 2019: 243−248. (查阅网上资料, 未找到对应的出版者信息, 请确认)[已经将该文献添加在邮件附件, 引用格式为GB/T 7714, 末尾改回了 (MARID VI). ]
    [26] 夏东兴, 吴桑云, 刘振夏, 等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋, 2001, 19(1): 17−24.

    Xia Dongxing, Wu Sangyun, Liu Zhenxia, et al. Research on the activity of submarine sand waves off Dongfang, Hainan Island[J]. Journal of Oceanography of Huanghai & Bohaiseas, 2001, 19(1): 17−24.
    [27] 孙洪亮, 黄卫民. 北部湾潮汐潮流的三维数值模拟[J]. 海洋学报, 2001, 23(2): 1−8.

    Sun Hongliang, Huang Weimin. Three-dimensional numerical simulation for tide and tidal current in the Beibu Gulf[J]. Haiyang Xuebao, 2001, 23(2): 1−8.
    [28] 朱成文. 南海西北部近海海底沉积物特征[J]. 海洋地质研究, 1981, 1(2): 50−60.

    Zhu Chengwen. The features of the offshore deposits in the north-western South China Sea[J]. Marine Geological Research, 1981, 1(2): 50−60.
    [29] 高抒, 周亮, 李高聪, 等. 海南岛全新世海岸演化过程与沉积记录[J]. 第四纪研究, 2016, 36(1): 1−17.

    Gao Shu, Zhou Liang, Li Gaocong, et al. Processes and sedimentary records for Holocene coastal environmental changes, Hainan Island: an overview[J]. Quaternary Sciences, 2016, 36(1): 1−17.
    [30] 许冬, 葛倩, 韩喜彬, 等. 海洋沉积源-汇过程的驱动因素: 以北部湾为例[J]. 海洋学研究, 2022, 40(3): 17−32.

    Xu Dong, Ge Qian, Han Xibin, et al. Driving force of marine sedimentary source to sink: a case study from Beibu Gulf[J]. Journal of Marine Sciences, 2022, 40(3): 17−32.
    [31] 高为利, 张富元, 章伟艳, 等. 海南岛周边海域表层沉积物粒度分布特征[J]. 海洋通报, 2009, 28(2): 71−80.

    Gao Weili, Zhang Fuyuan, Zhang Weiyan, et al. Characteristics of grain size distributions of surface sediments in the Hainan Island offshore area[J]. Marine Science Bulletin, 2009, 28(2): 71−80.
    [32] 肖晓, 石要红, 冯秀丽, 等. 北部湾表层沉积物粒度分布规律及沉积动力分区[J]. 中国海洋大学学报, 2016, 46(5): 83−89.

    Xiao Xiao, Shi Yaohong, Feng Xiuli, et al. Surface sediment characteristics and dynamics in Beibu gulf[J]. Periodical of Ocean University of China, 2016, 46(5): 83−89.
    [33] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63-85.
    [34] van Rijn L C. Unified view of sediment transport by currents and waves. II: suspended transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 668−689. doi: 10.1061/(ASCE)0733-9429(2007)133:6(668)
    [35] van Rijn L C, Kroon A. Sediment transport by currents and waves[C]//Proceedings of the 23rd International Conference on Coastal Engineering. Venice: American Society of Civil Engineers, 1993: 2613-2628.
    [36] van Rijn L C. Sediment transport, part II: suspended load transport[J]. Journal of Hydraulic Engineering, 1984, 110(11): 1613−1641. doi: 10.1061/(ASCE)0733-9429(1984)110:11(1613)
    [37] Ashley G M. Classification of large-scale subaqueous bedforms: a new look at an old problem[J]. Journal of Sedimentary Research, 1990, 60(1): 160−172. doi: 10.2110/jsr.60.160
    [38] van Dijk P M, Arens S M, van Boxel J H. Aeolian processes across transverse dunes. II: modelling the sediment transport and profile development[J]. Earth Surface Processes and Landforms, 1999, 24(4): 319−333. doi: 10.1002/(SICI)1096-9837(199904)24:4<319::AID-ESP963>3.0.CO;2-M
    [39] Kroy K, Fischer S, Obermayer B. The shape of barchan dunes[J]. Journal of Physics:Condensed Matter, 2005, 17(14): S1229−S1235. doi: 10.1088/0953-8984/17/14/012
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  26
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-02-27

目录

    /

    返回文章
    返回