Classification of sediment lithology at the Arctic mid-ocean ridges using multibeam water column bottom echo intensity information
-
摘要: 深海表层海底底质探测与分类作为底栖生境制图的核心内容,为深海资源探测、生态保护提供了基础要素信息。然而受深海声学观测的分辨率限制,传统基于多波束测深和反向散射强度信息的底质分类方法存在海底混合底质所导致的解译困难、置信度低的问题。为此,本文创新性地将多波束水体数据应用于深海底质分类,提出了基于底回波序列多维波形特征的混合底质分类方法。首先,借助水体与海底交互的序列回波信息,提取多维度底回波波形特征;其次,考虑到固有观测分辨率内的底质混合情况,构建了水体底回波丰度解译约束下的决策融合分类模型;最后,实验利用北极船载多波束数据对席状玄武岩、玄武岩角砾和火山玻璃三种底质进行分类与丰度估计,总体精度和Kappa系数达到了92.46%和0.89,相较于传统声纳图像分类方法分别提升了11.05%和0.21,为深海海底底栖环境空间预测制图提供了新策略。Abstract: As a core component of benthic habitat mapping, the detection and classification of deep-sea sediment provides basic information for deep-sea resource exploration and ecological protection. However, due to the limitation of the resolution of deep-sea acoustic observation, the traditional method of sediment classification based on multibeam bathymetry and backscatter intensity information suffers from the difficulty of interpretation and low confidence caused by the mixed sediment on the seafloor. For this reason, this paper innovatively applies multibeam water column data to deep-sea bottom classification, and proposes a mixed bottom classification method based on the multidimensional waveform characteristics of the bottom echo sequence. Firstly, the multidimensional bottom echo waveform features are extracted with the help of the sequence echo information of the interaction between the water body and the seafloor; secondly, a decision fusion classification model under the constraints of water column bottom echo abundance interpretation is constructed by taking into account the mixing of sediments within the intrinsic observational resolution; lastly, the experiments are carried out by using the Arctic shipborne multibeam data for the classification and abundance estimation of the three kinds of sediments, including the sheet basalt, the basalt breccia, and the volcanic glass, the overall accuracy and Kappa coefficient reached 92.46% and 0.89, which are 11.05% and 0.21 respectively compared with the traditional sonar image classification method, providing a new strategy for spatial prediction mapping of deep seabed benthic environment.
-
Key words:
- water column bottom echo /
- feature extraction /
- classification of sediment /
- abundance /
- decision fusion
-
表 1 样本扩充信息
Tab. 1 Sample expansion information
样本
类型底质
类型扩充方式 原始样本点数量(个) 相似度阈值/扩充层数 扩充后训练集数量(个) 扩充后测试集数量(个) 底回波波形 席状玄武岩 余弦函数相似度 1 0.74 462 463 玄武岩角砾 3 0.92 438 438 火山
玻璃1 0.74 465 465 格网点 席状玄武岩 邻域扩充 1 6 84 85 玄武岩角砾 3 6 252 255 火山
玻璃1 6 84 85 表 2 水体底回波分类结果对比
Tab. 2 Comparison of classification results of water column bottom echo
分类器 底质类型 席状玄武岩 玄武岩角砾 火山玻璃 用户精度 总精度(%) Kappa SVM 席状玄武岩 421 74 68 0.748 81.48 0.72 玄武岩角砾 17 342 47 0.842 火山玻璃 25 22 350 0.882 生产者精度 0.909 0.781 0.753 KNN 席状玄武岩 412 21 16 0.917 89.38 0.84 玄武岩角砾 9 403 43 0.886 火山玻璃 42 14 406 0.878 生产者精度 0.889 0.920 0.873 RF 席状玄武岩 432 18 8 0.943 91.43 0.87 玄武岩角砾 11 404 44 0.880 火山玻璃 20 16 413 0.919 生产者精度 0.933 0.922 0.888 DT 席状玄武岩 430 32 41 0.855 89.53 0.84 玄武岩角砾 20 399 30 0.889 火山玻璃 13 7 394 0.952 生产者精度 0.928 0.911 0.847 BPNN 席状玄武岩 19 9 87 0.94 53.00 0.30 玄武岩角砾 377 415 88 0.94 火山玻璃 67 14 290 0.79 生产者精度 0.041 0.947 0.624 表 3 声纳图像分类结果混淆矩阵
Tab. 3 Confusion matrix of sonar image classification results
分类器 底质类型 席状玄
武岩玄武岩
角砾火山玻璃 用户精度 总精度(%) Kappa RF 席状玄
武岩74 22 23 0.622 81.41 0.68 玄武岩
角砾7 221 11 0.925 火山玻璃 4 12 51 0.761 生产者
精度0.871 0.867 0.600 表 4 不同决策网格尺寸下精度统计
Tab. 4 Precision statistics under different decision mesh sizes
决策格网尺寸/m 席状玄武岩 玄武岩角砾 火山玻璃 OA(%) Kappa 5 0.780 0.840 0.933 85.14 0.78 10 0.765 0.872 0.912 84.92 0.77 15 0.832 0.909 0.916 88.51 0.83 20 0.873 0.918 0.890 89.31 0.84 25 0.927 0.929 0.880 91.14 0.87 30 0.950 0.943 0.884 92.46 0.89 35 0.931 0.929 0.860 90.56 0.86 40 0.829 0.900 0.781 83.53 0.75 45 0.814 0.829 0.768 80.31 0.70 50 0.779 0.708 0.715 73.43 0.60 55 0.771 0.658 0.688 70.64 0.56 60 0.747 0.655 0.645 68.30 0.52 -
[1] Gage J D, Tyler P A. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor[M]. Cambridge: Cambridge University Press, 1991. [2] Danovaro R, Gambi C, Dell' Anno A, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss[J]. Current Biology, 2008, 18(1): 1−8. doi: 10.1016/j.cub.2007.11.056 [3] Thurber A R, Sweetman A K, Narayanaswamy B E, et al. Ecosystem function and services provided by the deep sea[J]. Biogeosciences, 2014, 11(14): 3941−3963. doi: 10.5194/bg-11-3941-2014 [4] 赵玉新, 赵廷. 海底声呐图像智能底质分类技术研究综述[J]. 智能系统学报, 2020, 15(3): 587−600. doi: 10.11992/tis.202004026Zhao Yuxin, Zhao Ting. Survey of the intelligent seabed sediment classification technology based on sonar images[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 587−600. doi: 10.11992/tis.202004026 [5] Preston J. Automated acoustic seabed classification of multibeam images of Stanton Banks[J]. Applied Acoustics, 2009, 70(10): 1277−1287. doi: 10.1016/j.apacoust.2008.07.011 [6] Wang Mingwei, Wu Ziyin, Yang Fanlin, et al. Multifeature extraction and seafloor classification combining LiDAR and MBES data around Yuanzhi Island in the South China Sea[J]. Sensors, 2018, 18(11): 3828. doi: 10.3390/s18113828 [7] Lucieer V, Hill N A, Barrett N S, et al. Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images[J]. Estuarine, Coastal and Shelf Science, 2013, 117: 94−106. doi: 10.1016/j.ecss.2012.11.001 [8] Lacharité M, Brown C J, Gazzola V. Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods[J]. Marine Geophysical Research, 2018, 39(1): 307−322. [9] Cui Xiaodong, Yang Fanlin, Wu Ziyin, et al. Deep-sea sediment mixed pixel decomposition based on multibeam backscatter intensity segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1−15. [10] Zhang Kai, Li Qianqian, Zhu Hongchun, et al. Acoustic deep-sea seafloor characterization accounting for heterogeneity effect[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3034−3042. doi: 10.1109/TGRS.2019.2946986 [11] Liu Hongxia, Yang Fanlin, Zheng Shuangqiang, et al. A method of sidelobe effect suppression for multibeam water column images based on an adaptive soft threshold[J]. Applied Acoustics, 2019, 148: 467−475. doi: 10.1016/j.apacoust.2019.01.006 [12] Mei Sai, Yang Huiliang, Sun Zhilei, et al. Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 222−231. [13] 张万远, 王雪斌, 周天, 等. 基于多波束测深声呐的水中气体目标检测方法[J]. 哈尔滨工程大学学报, 2020, 41(8): 1143−1149. doi: 10.11990/jheu.201906009Zhang Wanyuan, Wang Xuebin, Zhou Tian, et al. Detection of underwater gas targets by using a multi-beam bathymetric sonar[J]. Journal of Harbin Engineering University, 2020, 41(8): 1143−1149. doi: 10.11990/jheu.201906009 [14] 刘洪霞. 多波束声呐水体影像在中底层水域目标探测中的应用[D]. 青岛: 山东科技大学, 2020Liu Hongxia. The application of multibeam sonar water column image in middle and bottom water target detection[D]. Qingdao: Shandong University of Science and Technology, 2020. [15] Anderson J T, Holliday D V, Kloser R, et al. Acoustic seabed classification: current practice and future directions[J]. ICES Journal of Marine Science, 2008, 65(6): 1004−1011. doi: 10.1093/icesjms/fsn061 [16] Porskamp P, Schimel A C G, Young M, et al. Integrating multibeam echosounder water‐column data into benthic habitat mapping[J]. Limnology and Oceanography, 2022, 67(8): 1701−1713. doi: 10.1002/lno.12160 [17] Zhao Jianhu, Meng Junxia, Zhang Hongmei, et al. Comprehensive detection of gas plumes from multibeam water column images with minimisation of noise interferences[J]. Sensors, 2017, 17(12): 2755. doi: 10.3390/s17122755 [18] 张目宁, 杨鲲, 吴永亭, 等. 用于海底目标识别与底质分类的多波束水体波形预处理[J]. 海洋通报, 2021, 40(1): 44−52,69.Zhang Muning, Yang Kun, Wu Yongting, et al. Multi-beam water columndata processing method for target recognition and classification of seabed sediments[J]. Marine Science Bulletin, 2021, 40(1): 44−52,69. [19] Diesing M, Green S L, Stephens D, et al. Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches[J]. Continental Shelf Research, 2014, 84: 107−119. doi: 10.1016/j.csr.2014.05.004 [20] Lucieer V, Hill N A, Barrett N S, et al. Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images[J]. Estuarine, Coastal and Shelf Science, 2013, 117: 94-106. (查阅网上资料, 本条文献与第7条重复, 请确认) [21] Luo Xiaowen, Qin Xiaoming, Wu Ziyin, et al. Sediment classification of small-size seabed acoustic images using convolutional neural networks[J]. IEEE Access, 2019, 7: 98331−98339. doi: 10.1109/ACCESS.2019.2927366 [22] Hu Haiyang, Feng Chengkai, Cui Xiaodong, et al. A sample enhancement method based on simple linear iterative clustering superpixel segmentation applied to multibeam seabed classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1−15. [23] Xia Peipei, Zhang Li, Li Fanzhang. Learning similarity with cosine similarity ensemble[J]. Information Sciences, 2015, 307: 39−52. doi: 10.1016/j.ins.2015.02.024 [24] Clinton N, Yu Le, Gong Peng. Geographic stacking: decision fusion to increase global land cover map accuracy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 57−65. doi: 10.1016/j.isprsjprs.2015.02.010 [25] Löw F, Conrad C, Michel U. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 191−204. doi: 10.1016/j.isprsjprs.2015.07.001 [26] 尚晓东, 董理, 赵建虎, 等. 空间适应性分割尺度下的海底底质声学图像分类[J]. 兵工学报, 2025, 46(5): 240599. doi: 10.12382/bgxb.2024.0599Shang Xiaodong, Dong Li, Zhao Jianhu, et al. Classification of seafloor sediments using acoustic image based on spatially adaptive segmentation scales[J]. Acta Armamentarii, 2025, 46(5): 240599. doi: 10.12382/bgxb.2024.0599 [27] 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309−319. doi: 10.3975/cagsb.2020.022501Li Cangbo, Xiao Keyan, Li Nan, et al. A comparative study of support vector machine, random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J]. Acta Geoscientia Sinica, 2020, 41(2): 309−319. doi: 10.3975/cagsb.2020.022501 [28] 王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 44(5): 526−532. doi: 10.11947/j.AGCS.2015.20130497Wang Huixian, Jin Huijia, Wang Jiaolong, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 526−532. doi: 10.11947/j.AGCS.2015.20130497 [29] 于俊, 陈辉, 朱大明, 等. 基于软硬协作决策的半监督珊瑚礁底质分类方法[J]. 海洋学报, 2023, 45(4): 154−164.Yu Jun, Chen Hui, Zhu Daming, et al. A semi-supervised coral reef substrate classification method based on soft and hard collaborative decision making[J]. Haiyang Xuebao, 2023, 45(4): 154−164. [30] 宋佰万, 付明生, 崔晓东, 等. 基于多维度声学特征优选的多波束海底底质分类[J]. 海洋通报, 2024, 43(2): 198−209.Song Baiwan, Fu Mingsheng, Cui Xiaodong, et al. Multi-beam benthic environment classification based on multi-dimensional acoustic feature optimization[J]. Marine Science Bulletin, 2024, 43(2): 198−209. [31] 王嘉翀, 吴自银, 王明伟, 等. 海底声学底质分类的ELM-AdaBoost方法[J]. 海洋学报, 2021, 43(12): 144−151. doi: 10.12284/j.issn.0253-4193.2021.12.hyxb202112014Wang Jiachong, Wu Ziyin, Wang Mingwei, et al. ELM-AdaBoost method of acoustic seabed sediment classification[J]. Haiyang Xuebao, 2021, 43(12): 144−151. doi: 10.12284/j.issn.0253-4193.2021.12.hyxb202112014 -