留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强半日潮中海洋内波剪切不稳定特性研究

张宇飞 张永垂 黄泓 张铭

张宇飞,张永垂,黄泓,等. 强半日潮中海洋内波剪切不稳定特性研究[J]. 海洋学报,2025,47(x):1–13
引用本文: 张宇飞,张永垂,黄泓,等. 强半日潮中海洋内波剪切不稳定特性研究[J]. 海洋学报,2025,47(x):1–13
Zhang Yufei,Zhang Yongchui,Huang Hong, et al. The Character Study on Shear Instability of Ocean Internal Waves in Strong Semi-Diurnal Tidal Currents[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Zhang Yufei,Zhang Yongchui,Huang Hong, et al. The Character Study on Shear Instability of Ocean Internal Waves in Strong Semi-Diurnal Tidal Currents[J]. Haiyang Xuebao,2025, 47(x):1–13

强半日潮中海洋内波剪切不稳定特性研究

基金项目: 国家重点研发计划(批准号:2017YFA0604500)资助的课题。
详细信息
    作者简介:

    张宇飞,(1995— ),男,博士生,主要从事海洋研究,Email:15066836807@163.com

    通讯作者:

    张铭,(1945— ),男,教授,主要从事海洋研究,E-mail:zhangm1945@163.com

The Character Study on Shear Instability of Ocean Internal Waves in Strong Semi-Diurnal Tidal Currents

  • 摘要: 本文将定常垂向剪切流和正压半日潮流的叠加作为背景流,给出了在此背景流下无海底地形起伏的海洋内波非静力控制方程组,建立了一个二维海洋内波数值模型,用以研究内波的生成、发展和演变特性以及不稳定内波的结构和性质。主要研究结果为:当给定一个初始小扰动时,仅有潮流作为背景流的条件下,扰动不会发展。背景流为正压半日潮流与定常垂向剪切流叠加时,扰动出现剪切不稳定,其能量呈增长趋势。扰动能量出现与潮流同周期的波状变化。内波生成后,呈现与潮流大小同步的顺、逆剪切流方向的平移,顺向平移远较逆向平移快,总体上沿顺向剪切流方向移动,表明潮流对内波发展有调制作用。该内波流函数扰动呈现由多个闭合正负环流圈构成的波包形态,环流中心出现在水体中部。密度扰动主体均出现在跃层附近,为跃层所俘获。因潮流与扰动的相互作用,会使单一频率的简谐波变成包含很多频率的波包,即为潮流的变频作用,其会明显降低内波剪切不稳定的增长率,该作用具有维稳特性。内波的群速度总趋势沿剪切流方向。不稳定内波的水平尺度基本与扰动初值无关。该内波的性质属非平衡的重力(惯性)波。
  • 图  1  $ \sigma ' $初始场的空间分布(单位:10−4ms−2),

    Fig.  1  The $ \sigma ' $ distribution at initial moment (units: 10−4 ms−2)

    图  2  Ex1中ED (a), EN (b)以及潮流随时间的变化

    Fig.  2  ED (a), EN (b) and the tidal current change with time in Ex1

    图  3  Ex1中流函数的空间分布图(单位:m2s−1

    积分时间:(a)1 h,(b)12 h,(c)24 h,(d)72 h

    Fig.  3  The distribution of stream functions in Ex1 (units: m2s−1)

    Integration time: (a)1 h, (b)12 h, (c)24 h, (d)72 h

    图  4  Ex1中$ \sigma ' $的空间分布图(单位:10−4ms−2

    积分时间:(a)1 h,(b)12 h,(c)24 h,(d)72 h

    Fig.  4  The $ \sigma ' $ distribution in Ex1 (units: 10−4 m s−2)

    Integration time: (a)1 h, (b)12 h, (c)24 h, (d)72 h

    图  5  Ex2中 ED (a), EN (b)以及潮流随时间的变化

    Fig.  5  ED (a), EN (b) and tidal current change with time in Ex2

    图  6  Ex2中流函数的空间分布图(单位:m2s−1

    积分时间:(a)12 h,(b)72 h

    Fig.  6  The distribution of stream functions in Ex2 (units: m2 s−1)

    Integration time: (a)12 h, (b)72 h

    图  7  Ex4(a)及Ex3 (b) 中ED 随积分时间的变化

    Fig.  7  Ex4 (a) and Ex3 (b) change with time

    图  8  Ex2 (a)及Ex1 (b)中群速度随积分时间的变化

    Fig.  8  group velocity change with time in Ex2 (a) and Ex1 (b)

    图  9  Ex1流函数(a)及$ \sigma ' $(b)的水平分布

    Fig.  9  horizontal distribution of stream functions (a) and $ \sigma ' $(b) in Ex1

    图  10  Ex4 (a)及Ex3 (b)中流函数水平分布

    Fig.  10  distribution of stream functions in Ex4 (a) and Ex3 (b)

    表  1  Ex1~Ex5的数值试验方案

    Tab.  1  Ex1~Ex5 numerical experiment schemes

    试验
    名称
    正压
    潮流
    定常剪切流 平流项u'∂/∂x,
    w'∂/∂z
    初始扰动水平
    尺度(m)
    EX1 yes yes yes 320
    EX2 yes yes no 320
    EX3 no yes yes 320
    EX4 no yes no 320
    EX5 yes yes yes 640
    下载: 导出CSV

    表  2  Ex1、Ex2中ED(a)、EN(b) 值

    Tab.  2  ED (a), EN (b) in Ex1, Ex2

    试验 时间
    0 h 1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h
    Ex1 Ed 0.0000E+00 0.6679E-02 0.7746E-02 0.7848E-02 0.9436E-02 0.9437E-02 0.9992E-02 0.1061E-01 0.1132E-01 0.1045E-01
    En 0.2559E-05 0.6898E-05 0.7154E-05 0.6774E-05 0.1026E-04 0.8966E-05 0.9733E-05 0.1059E-04 0.1087E-04 0.1036E-04
    Ex2 Ed 0.0000E+00 0.6936E-02 0.8670E-02 0.1103E-01 0.1289E-01 0.1328E-01 0.1522E-01 0.1659E-01 0.1646E-01 0.1549E-01
    En 0.2559E-05 0.5748E-05 0.8115E-05 0.1012E-04 0.1289E-04 0.1281E-04 0.1499E-04 0.1609E-04 0.1617E-04 0.1532E-04
      注:Ed单位:ms−1; En 单位:ms−2
    下载: 导出CSV
  • [1] Carter G S, Gregg M C, Lien R C. Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf[J]. Continental Shelf Research, 2005, 25(12/13): 1499−1520.
    [2] D’Asaro E A, Lien R C, Henyey F. High-frequency internal waves on the Oregon continental shelf[J]. Journal of Physical Oceanography, 2007, 37(7): 1956−1967. doi: 10.1175/JPO3096.1
    [3] Moum J N, Klymak J M, Nash J D, et al. Energy transport by nonlinear internal waves[J]. Journal of Physical Oceanography, 2007, 37(7): 1968−1988. doi: 10.1175/JPO3094.1
    [4] Kunze E, MacKay C, McPhee-Shaw E E, et al. Turbulent mixing and exchange with interior waters on sloping boundaries[J]. Journal of Physical Oceanography, 2012, 42(6): 910−927. doi: 10.1175/JPO-D-11-075.1
    [5] Velarde M G, Tarakanov R Y, Marchenko A V. The Ocean in Motion: Circulation, Waves, Polar Oceanography[M]. Cham: Springer, 2018.
    [6] Legg S, Klymak J. Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge[J]. Journal of Physical Oceanography, 2008, 38(9): 1949−1964. doi: 10.1175/2008JPO3777.1
    [7] Yang Y J, Fang Y C, Chang M H, et al. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): C10003.
    [8] Nie Yuhua, Chen Zhiwu, Xie Jieshuo, et al. Internal waves generated by tidal flows over a triangular ridge with critical slopes[J]. Journal of Ocean University of China, 2019, 18(5): 1005−1012. doi: 10.1007/s11802-019-3985-4
    [9] Liu Qian, Shang Xiaodong, Xie Xiaohui. Observations of semidiurnal M2 internal tidal parametric subharmonic instability in the northeastern South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(1): 56−63. doi: 10.1007/s00343-019-9131-8
    [10] Kunze E. The relation between unstable shear layer thicknesses and turbulence lengthscales[J]. Journal of Marine Research, 2014, 72(2): 95−104. doi: 10.1357/002224014813758977
    [11] Alford M H, Peacock T, Mackinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399
    [12] 赵艳玲, 卢姁, 黄泓, 等. 失稳背景流下对称型海洋内波的生成演变[J]. 海洋学报, 2020, 42(11): 12−22.

    Zhao Yanling, Lu Xu, Huang Hong, et al. Generation and evolution on symmetric ocean inner waves in unstable background flow[J]. Haiyang Xuebao, 2020, 42(11): 12−22.
    [13] Yuan Yeli, Zheng Quanan, Dai Dejun, et al. Mechanism of internal waves in the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S17.
    [14] Rainville L, Pinkel R. Observations of energetic high-wavenumber internal waves in the Kuroshio[J]. Journal of Physical Oceanography, 2004, 34(7): 1495−505. doi: 10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2
    [15] Purwandana A, Cuypers Y, Bouruet-Aubertot P. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia[J]. Continental Shelf Research, 2021, 216: 104358. doi: 10.1016/j.csr.2021.104358
    [16] Si Zongshang, Fan Zhisong, Du Ling. Distribution of vertical turbulent mixing parameter caused by internal tidal waves and solitary waves in the South Yellow Sea[J]. Journal of Ocean University of China, 2012, 11(3): 279−289. doi: 10.1007/s11802-012-1910-1
    [17] Joshi M, Rao A D, Mohanty S, et al. Internal waves over the shelf in the western Bay of Bengal: a case study[J]. Ocean Dynamics, 2017, 67(1): 147−161. doi: 10.1007/s10236-016-1006-3
    [18] Sakai A, Senjyu T, Matsuno T, et al. Internal waves with high vertical wavenumber structure generated by diurnal tidal flow over the eastern ridge of Luzon Strait[J]. Journal of Oceanography, 2021, 77(5): 703−718. doi: 10.1007/s10872-021-00615-4
    [19] Slepyshev A A, Ankudinov N O. Generation of vertical fine structure by internal waves on a shear flow[J]. Physical Oceanography, 2024, 31(2): 161−177.
    [20] Min Wenjia, Li Qun, Xu Zhenhua, et al. High-resolution, non-hydrostatic simulation of internal tides and solitary waves in the southern East China Sea[J]. Ocean Modelling, 2023, 181: 102141. doi: 10.1016/j.ocemod.2022.102141
    [21] Rivera-Rosario G, Diamessis P J, Lien R C, et al. Three-dimensional perspective on a convective instability and transition to turbulence in an internal solitary wave of depression shoaling over gentle slopes[J]. Environmental Fluid Mechanics, 2023, 23(5): 1015−1035. doi: 10.1007/s10652-022-09844-7
    [22] Cai Shuqun, Wu Yuqi, Xu Jiexin, et al. On the generation and propagation of internal solitary waves in the southern Andaman Sea: a numerical study[J]. Science China Earth Sciences, 2021, 64(10): 1674−1686. doi: 10.1007/s11430-020-9802-8
    [23] Jia Tong, Liang Jianjun, Li Qiang, et al. Generation of shoreward nonlinear internal waves south of the Hainan island: synthetic aperture radar observations and numerical simulations[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2021JC017334. doi: 10.1029/2021JC017334
    [24] 邓冰, 张宇飞, 张铭. 海洋内波发展演变数值试验[J]. 海洋科学进展, 2017, 35(1): 62−72. doi: 10.3969/j.issn.1671-6647.2017.01.007

    Deng Bing, Zhang Yufei, Zhang Ming. Numerical experiments of oceanic internal wave evolution[J]. Advances in Marine Science, 2017, 35(1): 62−72. doi: 10.3969/j.issn.1671-6647.2017.01.007
    [25] Yang Wei, Wei Hao, Zhao Liang. Parametric subharmonic instability of the semidiurnal internal tides at the East China Sea shelf slope[J]. Journal of Physical Oceanography, 2020, 50(4): 907−920. doi: 10.1175/JPO-D-19-0163.1
    [26] Filonov A, Tereshchenko I, Ladah L B, et al. High amplitude internal tidal waves generated over an underwater sill in the Gulf of California[J]. Continental Shelf Research, 2020, 210: 104290. doi: 10.1016/j.csr.2020.104290
    [27] Zhang Yufei, Deng Bing, Zhang Ming. Analysis of the relation between ocean internal wave parameters and ocean surface fluctuation[J]. Frontiers of Earth Science, 2019, 13(2): 336−350. doi: 10.1007/s11707-018-0735-7
    [28] 邓冰, 张宇飞, 朱娟, 等. 海洋剪切流下失稳内波流场及传播的理论分析[J]. 海洋预报, 2016, 33(3): 1−8. doi: 10.11737/j.issn.1003-0239.2016.03.001

    Deng Bing, Zhang Yufei, Zhu Juan, et al. Theoretical analysis on the stream structure and propagation of unstable ocean internal wave at background shear flow[J]. Marine Forecasts, 2016, 33(3): 1−8. doi: 10.11737/j.issn.1003-0239.2016.03.001
    [29] Rama J, Shakespeare C J, Hogg A M. The wavelength dependence of the propagation of near-inertial internal waves[J]. Journal of Physical Oceanography, 2022, 52(10): 2493−2514. doi: 10.1175/JPO-D-21-0266.1
    [30] 徐肇延. 海洋内波动力学[M]. 北京: 科学出版社, 1999.

    Xu Zhaoting. Ocean Internal Wave Dynamics[M]. Beijing: Science Press, 1999. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [31] 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.

    Fang Xinhua, DU Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-09-02
  • 网络出版日期:  2025-09-15

目录

    /

    返回文章
    返回