The Character Study on Shear Instability of Ocean Internal Waves in Strong Semi-Diurnal Tidal Currents
-
摘要: 本文将定常垂向剪切流和正压半日潮流的叠加作为背景流,给出了在此背景流下无海底地形起伏的海洋内波非静力控制方程组,建立了一个二维海洋内波数值模型,用以研究内波的生成、发展和演变特性以及不稳定内波的结构和性质。主要研究结果为:当给定一个初始小扰动时,仅有潮流作为背景流的条件下,扰动不会发展。背景流为正压半日潮流与定常垂向剪切流叠加时,扰动出现剪切不稳定,其能量呈增长趋势。扰动能量出现与潮流同周期的波状变化。内波生成后,呈现与潮流大小同步的顺、逆剪切流方向的平移,顺向平移远较逆向平移快,总体上沿顺向剪切流方向移动,表明潮流对内波发展有调制作用。该内波流函数扰动呈现由多个闭合正负环流圈构成的波包形态,环流中心出现在水体中部。密度扰动主体均出现在跃层附近,为跃层所俘获。因潮流与扰动的相互作用,会使单一频率的简谐波变成包含很多频率的波包,即为潮流的变频作用,其会明显降低内波剪切不稳定的增长率,该作用具有维稳特性。内波的群速度总趋势沿剪切流方向。不稳定内波的水平尺度基本与扰动初值无关。该内波的性质属非平衡的重力(惯性)波。Abstract: A two-dimensional numerical model of ocean internal waves is established by using the non-static governing equations of the waves without seafloor topography to study the generation, development and evolution characteristics, as well as the structure and properties of internal waves under the background flow, which is the superposition of steady vertical shear flow and the strong barotropic semi-diurnal tidal currents. The main research results are as follows: When there is an initial disturbance and only the tidal currents is used as the background flow, the disturbance will not develop. When the barotropic semi-diurnal tidal currents and the steady vertical shear flows are superimposed as the background flow, the disturbance shows shear instability, and its energy shows an increasing trend and a wave-like change in the same phase as the tidal current. After the internal waves were generated, showing a moving in the direction of forward and reverse shear flow synchronized with the period of the tidal current. The forward moving was much faster than the reverse moving, and overall it moved along the direction of forward shear flow, indicating that the tidal current had a modulating effect on the development of internal waves. The flow function disturbance of the internal wave presents a wave packet shape composed of multiple closed positive and negative circles, with the circulation center appearing in the middle of the water body. The main body of density disturbance appears near the pycnocline and is captured by the pycnocline. Due to the interaction between tidal currents and disturbances, a single frequency harmonic wave can be transformed into a wave packet containing many frequencies, known as the frequency conversion effect of currents. This effect significantly reduces the growth rate of internal wave shear instability and has the characteristics of maintaining stability. The overall trend of the group velocity of internal waves is along the direction of shear flow. The horizontal scale of the unstable internal waves is basically independent of the initial disturbance value. The nature of this internal waves are non-equilibrium gravitational (inertial) waves.
-
表 1 Ex1~Ex5的数值试验方案
Tab. 1 Ex1~Ex5 numerical experiment schemes
试验
名称正压
潮流定常剪切流 平流项u'∂/∂x,
w'∂/∂z初始扰动水平
尺度(m)EX1 yes yes yes 320 EX2 yes yes no 320 EX3 no yes yes 320 EX4 no yes no 320 EX5 yes yes yes 640 表 2 Ex1、Ex2中ED(a)、EN(b) 值
Tab. 2 ED (a), EN (b) in Ex1, Ex2
试验 时间 0 h 1 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h Ex1 Ed 0.0000E+00 0.6679E-02 0.7746E-02 0.7848E-02 0.9436E-02 0.9437E-02 0.9992E-02 0.1061E-01 0.1132E-01 0.1045E-01 En 0.2559E-05 0.6898E-05 0.7154E-05 0.6774E-05 0.1026E-04 0.8966E-05 0.9733E-05 0.1059E-04 0.1087E-04 0.1036E-04 Ex2 Ed 0.0000E+00 0.6936E-02 0.8670E-02 0.1103E-01 0.1289E-01 0.1328E-01 0.1522E-01 0.1659E-01 0.1646E-01 0.1549E-01 En 0.2559E-05 0.5748E-05 0.8115E-05 0.1012E-04 0.1289E-04 0.1281E-04 0.1499E-04 0.1609E-04 0.1617E-04 0.1532E-04 注:Ed单位:ms−1; En 单位:ms−2 -
[1] Carter G S, Gregg M C, Lien R C. Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf[J]. Continental Shelf Research, 2005, 25(12/13): 1499−1520. [2] D’Asaro E A, Lien R C, Henyey F. High-frequency internal waves on the Oregon continental shelf[J]. Journal of Physical Oceanography, 2007, 37(7): 1956−1967. doi: 10.1175/JPO3096.1 [3] Moum J N, Klymak J M, Nash J D, et al. Energy transport by nonlinear internal waves[J]. Journal of Physical Oceanography, 2007, 37(7): 1968−1988. doi: 10.1175/JPO3094.1 [4] Kunze E, MacKay C, McPhee-Shaw E E, et al. Turbulent mixing and exchange with interior waters on sloping boundaries[J]. Journal of Physical Oceanography, 2012, 42(6): 910−927. doi: 10.1175/JPO-D-11-075.1 [5] Velarde M G, Tarakanov R Y, Marchenko A V. The Ocean in Motion: Circulation, Waves, Polar Oceanography[M]. Cham: Springer, 2018. [6] Legg S, Klymak J. Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge[J]. Journal of Physical Oceanography, 2008, 38(9): 1949−1964. doi: 10.1175/2008JPO3777.1 [7] Yang Y J, Fang Y C, Chang M H, et al. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): C10003. [8] Nie Yuhua, Chen Zhiwu, Xie Jieshuo, et al. Internal waves generated by tidal flows over a triangular ridge with critical slopes[J]. Journal of Ocean University of China, 2019, 18(5): 1005−1012. doi: 10.1007/s11802-019-3985-4 [9] Liu Qian, Shang Xiaodong, Xie Xiaohui. Observations of semidiurnal M2 internal tidal parametric subharmonic instability in the northeastern South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(1): 56−63. doi: 10.1007/s00343-019-9131-8 [10] Kunze E. The relation between unstable shear layer thicknesses and turbulence lengthscales[J]. Journal of Marine Research, 2014, 72(2): 95−104. doi: 10.1357/002224014813758977 [11] Alford M H, Peacock T, Mackinnon J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65−69. doi: 10.1038/nature14399 [12] 赵艳玲, 卢姁, 黄泓, 等. 失稳背景流下对称型海洋内波的生成演变[J]. 海洋学报, 2020, 42(11): 12−22.Zhao Yanling, Lu Xu, Huang Hong, et al. Generation and evolution on symmetric ocean inner waves in unstable background flow[J]. Haiyang Xuebao, 2020, 42(11): 12−22. [13] Yuan Yeli, Zheng Quanan, Dai Dejun, et al. Mechanism of internal waves in the Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S17. [14] Rainville L, Pinkel R. Observations of energetic high-wavenumber internal waves in the Kuroshio[J]. Journal of Physical Oceanography, 2004, 34(7): 1495−505. doi: 10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2 [15] Purwandana A, Cuypers Y, Bouruet-Aubertot P. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia[J]. Continental Shelf Research, 2021, 216: 104358. doi: 10.1016/j.csr.2021.104358 [16] Si Zongshang, Fan Zhisong, Du Ling. Distribution of vertical turbulent mixing parameter caused by internal tidal waves and solitary waves in the South Yellow Sea[J]. Journal of Ocean University of China, 2012, 11(3): 279−289. doi: 10.1007/s11802-012-1910-1 [17] Joshi M, Rao A D, Mohanty S, et al. Internal waves over the shelf in the western Bay of Bengal: a case study[J]. Ocean Dynamics, 2017, 67(1): 147−161. doi: 10.1007/s10236-016-1006-3 [18] Sakai A, Senjyu T, Matsuno T, et al. Internal waves with high vertical wavenumber structure generated by diurnal tidal flow over the eastern ridge of Luzon Strait[J]. Journal of Oceanography, 2021, 77(5): 703−718. doi: 10.1007/s10872-021-00615-4 [19] Slepyshev A A, Ankudinov N O. Generation of vertical fine structure by internal waves on a shear flow[J]. Physical Oceanography, 2024, 31(2): 161−177. [20] Min Wenjia, Li Qun, Xu Zhenhua, et al. High-resolution, non-hydrostatic simulation of internal tides and solitary waves in the southern East China Sea[J]. Ocean Modelling, 2023, 181: 102141. doi: 10.1016/j.ocemod.2022.102141 [21] Rivera-Rosario G, Diamessis P J, Lien R C, et al. Three-dimensional perspective on a convective instability and transition to turbulence in an internal solitary wave of depression shoaling over gentle slopes[J]. Environmental Fluid Mechanics, 2023, 23(5): 1015−1035. doi: 10.1007/s10652-022-09844-7 [22] Cai Shuqun, Wu Yuqi, Xu Jiexin, et al. On the generation and propagation of internal solitary waves in the southern Andaman Sea: a numerical study[J]. Science China Earth Sciences, 2021, 64(10): 1674−1686. doi: 10.1007/s11430-020-9802-8 [23] Jia Tong, Liang Jianjun, Li Qiang, et al. Generation of shoreward nonlinear internal waves south of the Hainan island: synthetic aperture radar observations and numerical simulations[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2021JC017334. doi: 10.1029/2021JC017334 [24] 邓冰, 张宇飞, 张铭. 海洋内波发展演变数值试验[J]. 海洋科学进展, 2017, 35(1): 62−72. doi: 10.3969/j.issn.1671-6647.2017.01.007Deng Bing, Zhang Yufei, Zhang Ming. Numerical experiments of oceanic internal wave evolution[J]. Advances in Marine Science, 2017, 35(1): 62−72. doi: 10.3969/j.issn.1671-6647.2017.01.007 [25] Yang Wei, Wei Hao, Zhao Liang. Parametric subharmonic instability of the semidiurnal internal tides at the East China Sea shelf slope[J]. Journal of Physical Oceanography, 2020, 50(4): 907−920. doi: 10.1175/JPO-D-19-0163.1 [26] Filonov A, Tereshchenko I, Ladah L B, et al. High amplitude internal tidal waves generated over an underwater sill in the Gulf of California[J]. Continental Shelf Research, 2020, 210: 104290. doi: 10.1016/j.csr.2020.104290 [27] Zhang Yufei, Deng Bing, Zhang Ming. Analysis of the relation between ocean internal wave parameters and ocean surface fluctuation[J]. Frontiers of Earth Science, 2019, 13(2): 336−350. doi: 10.1007/s11707-018-0735-7 [28] 邓冰, 张宇飞, 朱娟, 等. 海洋剪切流下失稳内波流场及传播的理论分析[J]. 海洋预报, 2016, 33(3): 1−8. doi: 10.11737/j.issn.1003-0239.2016.03.001Deng Bing, Zhang Yufei, Zhu Juan, et al. Theoretical analysis on the stream structure and propagation of unstable ocean internal wave at background shear flow[J]. Marine Forecasts, 2016, 33(3): 1−8. doi: 10.11737/j.issn.1003-0239.2016.03.001 [29] Rama J, Shakespeare C J, Hogg A M. The wavelength dependence of the propagation of near-inertial internal waves[J]. Journal of Physical Oceanography, 2022, 52(10): 2493−2514. doi: 10.1175/JPO-D-21-0266.1 [30] 徐肇延. 海洋内波动力学[M]. 北京: 科学出版社, 1999.Xu Zhaoting. Ocean Internal Wave Dynamics[M]. Beijing: Science Press, 1999. (查阅网上资料, 未找到本条文献英文信息, 请确认) [31] 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.Fang Xinhua, DU Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005. -