The effects of oyster kelp polyculture on seawater quality, oyster growth and nutrition
-
摘要: 为比较龙口太平洋牡蛎(Crassostrea gigas)单养、牡蛎和海带(Laminaria japonica)混养两种养殖模式下的海水水质及收获期牡蛎的生长及营养成分,在一定周期内检测了养殖区(单养养殖区M1、混养养殖区M2)海水的水质理化因子、细菌和浮游植物等指标,分析比较了收获期M1和M2牡蛎的生长及营养成分。结果显示,M1和M2的水温、盐度、pH、溶解氧(DO)、弧菌丰度均无明显差异,且符合国家海水水质二类标准,M2的化学需氧量(COD)、氮磷营养盐及异养菌丰度在多数月份低于M1,认为与M2中海带可有效吸收牡蛎代谢废物中的有机氮、磷有关。M2硅藻含量高于M1,认为与M2氮磷比更适宜硅藻的生长、M2的牡蛎滤食海带碎屑间接降低对浮游植物的消耗有关。M2的牡蛎肥满度、软体湿重和蛋白质含量显著高于M1的牡蛎(P<0.05),壳宽和脂肪含量极显著高于M1的牡蛎(P<0.01),认为与M2中海带碎屑也可被贝滤食,同时海带的存在降低了COD、净化了水质,利于牡蛎生长等因素有关。M1的牡蛎含水量、灰分和壳干重显著高于M2(P<0.05),总糖极显著高于M2的牡蛎(P<0.01),与M1浮游植物密度相对低,M1的牡蛎滤食频率增加及耗能有关。M1的牡蛎EAA显著高于M2的牡蛎(P<0.05),认为丰富的浮游植物种类和较高的营养盐可促进EAA的积累。研究认为贝藻混养可增加对牡蛎代谢物的消耗,防止海水污染的产生,利于牡蛎生长。Abstract: In order to compare the seawater quality, the growth and nutrient composition of harvesting period Pacific oysters (Crassostrea gigas) under two different culture model of oyster monoculture or polyculture with Laminaria japonica (L. japonica) in Longkou. The indicators such as physicochemical factors, bacteria and phytoplankton in seawater from aquaculture areas (monoculture area M1, polyculture area M2) were detected during a period time, the growth and nutrient composition of oysters in M1 and M2 were assayed and compared when oysters were harvested. The results showed that there had no significant difference in water temperature, salinity, pH, dissolved oxygen (DO) and vibrio abundance between M1 and M2, and they were all in line with the national seawater quality standard of Class II. The content of chemical oxygen demand (COD), nitrogen and phosphorus nutrient salts, heterotrophic bacterial abundance content in M2 were lower than that in M1 in most of months, we inferred that L. japonica in M2 could effectively absorb organic nitrogen and phosphorus from oyster metabolic wastes. The diatom content was higher in M2 than that in M1, it maybe be related to the fact that the nitrogen to phosphorus ratio in M2 was more suitable for diatom growth, and oysters in M2 indirectly reduce their consumption of phytoplankton by filter feeding on L. japonica detritus. The oyster’s plumpness, soft body wet weight and protein content in M2 were significantly (P < 0.05) higher than that in M1, the oyster’s shell width and fat content in M2 were extremely significantly (P < 0.01) higher than that in M1, it was believed that oysters in M2 could filter-fed the L. japonica detritus at the same time the L. japonica reduced seawater COD in M2 and purified the seawater, all above factors were beneficial for oyster growth. The water content, ash content and shell dry weight were significantly higher (P < 0.05) in oysters from M1 than M2, total sugars in oysters from M1 were extremely significantly higher (P < 0.01) than from M2, the above results were speculated to be related to the low phytoplankton densities in M1, which increased filter feeding frequency and energy consumption of oyster in M1. EAA was significantly higher (P < 0.05) in oysters from M1 than from M2, it was believed that rich species of phytoplankton and higher nutrient salts content could promote EAA accumulation. The study suggested that shellfish-algae polyculture can increases the consumption of oyster metabolites, prevent seawater pollution, and facilitate oyster growth.
-
Key words:
- polyculture /
- xxxxx /
- phytoplankton /
- growth index /
- nutritional evaluation
-
表 1 有机污染评价(A)分级[18]
Tab. 1 Classification of organic pollution
A值 <0 0~1 1~2 2~3 3~4 >4 污染程度分级 0 1 2 3 4 5 水质评价 良好 较好 开始受到污染 轻度污染 中度污染 严重污染 表 2 M1和M2养殖区的N/P
Tab. 2 N/P in the M1 and M2 culture areas
N/P 2021年11月 2022年1月 3月 5月 7月 9月 11月 M1 42.45 82.68 25.10 34.34 22.35 26.34 24.72 M2 25.41 42.10 32.08 26.87 25.91 25.28 25.19 表 3 M1和M2养殖区海水有机污染指数
Tab. 3 Organic pollution index of seawater in M1 and M2 culture areas
时间 2021年 2022年 11月 1月 3月 5月 7月 9月 11月 M1 A值 2.59 0.69 -0.28 0.48 1.05 0.86 1.54 污染程度分级 3 1 0 1 2 1 2 水质评价 轻度污染 较好 良好 较好 开始受到污染 较好 开始受到污染 M2 A值 2.51 1.14 -0.33 0.28 0.4 0.74 1.23 污染程度分级 3 2 0 1 1 1 2 水质评价 轻度污染 开始受到污染 良好 较好 较好 较好 开始受到污染 表 4 M1和M2养殖区海水营养状态评价
Tab. 4 Evaluation of the Nutritional Status of Seawater in M1 and M2 culture areas
指数 养殖区 时间 2021年 2022年 11月 1月 3月 5月 7月 9月 11月 E M1 4.04 1.14 0.69 0.80 0.80 0.93 2.37 M2 4.65 2.18 0.60 0.42 0.30 0.95 1.77 NQI M1 3.63 2.54 1.58 1.66 1.72 1.87 2.42 M2 3.36 2.77 1.55 1.38 1.28 1.81 2.20 表 5 M1和M2养殖区浮游植物物种组成
Tab. 5 Species composition of phytoplankton in M1 and M2 culture areas
门 种类 M1 M2 2021年 2022年 2021年 2022年 11月 1月 3月 5月 7月 9月 11月 11月 1月 3月 5月 7月 9月 11月 硅藻门 边缘菱形藻 Nitzschia marginulata + 大洋角管藻 Cerataulina pelagica + + + 丹麦角毛藻 Chaetoceros danicus + + 丹麦细柱藻 Leptocylindrus danicus + 海链藻 Thalassiosira sp. + + + 棘角毛藻 Chaetoceros curvisetus + + 角毛藻 chaetoceros sp. + + + + + 菱形藻 Nitzschia sp. + + + 洛氏角毛藻 Chaetoceros curvisetus + 牟氏角毛藻 Chaetoceros muelleri + 柔弱几内亚藻 Guinardia delicatula + + + 双头菱形藻 Nitzschia amphibia + + 斯托根管藻Rhizosolenia Stolterfothii + + 纤细角毛藻 Chaetoceros gracilis + + 小环藻 Cyclotella sp. + + 圆筛藻 Coscinodiscus sp. + 长刺根管藻Rhizosolenia longiseta + + 长菱形藻 Nitzschia longissima + + + 中肋骨条藻Skeletonemaceae costatum + + + + + 舟形藻 Navicula sp. + 甲藻门 多甲藻 Peridinium sp. + + 海洋原甲藻 Protoperidinium micans + 具刺膝沟藻 Gonyaulax spinifera + + 裸甲藻 Gymnodinium sp. + + + + + + + + 甲藻门 三角角藻 Ceratium tripos + 原甲藻 Prorocentrum sp. + + + + + 金藻门 单鞭金藻 Chromulina sp. + + + + + + + + + + + + + + 等鞭金藻 Isochrysis sp. + + + + + + + + + + + + + 小三毛金藻 Prymnesiaceae parvum + + + 棕鞭藻 Ochromonas sp. + 隐藻门 蓝隐藻 Chroomonas sp. + + + + + + + + + + + 尖尾蓝隐藻 Chroomonas acuta + + + + + + + + + 长形蓝隐藻 Chroomonas placoidea + 隐藻Cryptomonas sp. + + 绿藻门 小球藻 Chlorella sp. + + + + + + + + + + + + + + 娇柔塔肥藻 Pyramintonas delicatula + + 平藻 Pedinomonas sp. + + 十字藻 Crucigenia quadrata + 雨生红球藻Haematococcus pluvialis + + 注:“+”表示该物种在该养殖区被检测到 Note: "+" indicates that the species has been detected in the aquaculture area 表 6 M1和M2养殖区浮游植物优势种
Tab. 6 6Dominant species of phytoplankton in M1 and M2 culture areas
养殖区 时间 2021年 2022年 11月 1月 3月 5月 7月 9月 11月 M1 大洋角管藻
0.11− 蓝隐藻
0.05
中肋骨条藻
0.04中肋骨条藻
0.06
小球藻
0.02
尖尾蓝隐藻
0.02尖尾蓝隐藻
0.02尖尾蓝隐藻
0.08蓝隐藻
0.02
海链藻
0.02M2 大洋角管藻
0.12小球藻
0.02蓝隐藻
0.03
海链藻
0.04中肋骨条藻
0.07尖尾蓝隐藻
0.03尖尾蓝隐藻
0.10− 注:表中数字表示该物种的优势度(Y) Note: The numbers in the table indicate the dominance (Y) of the species 表 7 M1和M2养殖区牡蛎生长性状比较
Tab. 7 Comparison of growth characteristics of oysters in M1 and M2 culture areas
组别 壳长 壳宽 壳高 壳干重 总重 软体湿重 软体干重 肥满度 M1 7.12±0.76 4.22±0.52 13.16±2.05 158.63±3.83* 194.83±14.52 21.53±2.22 3.75±0.65 2.36±0.12 M2 7.17±0.48 5.00±0.64** 13.26±1.50 145.25±4.33 188.69±8.21 25.24±0.77* 4.63±0.85 3.19±0.13* 注:采用单因素方差分析和Duncan多重比较,*表示P<0.05,**P<0.01 Note: one-way ANOVA and Duncan multiple comparison were used, *Indicates P<0.05, ** P<0.01 表 8 M1和M2养殖区牡蛎基础营养成分对比(g/100g)
Tab. 8 Comparison of basic nutritional components of M1 and M2 oysters (g/100g)
水分 脂肪 粗蛋白 灰分 总糖 M1 83.27±1.3* 1.05±0.03 8.01±0.46 2.94±0.15* 5.35±0.15** M2 81.61±1.6 2.22±0.16** 9.48±0.61* 2.48±0.10 4.17±0.11 注:采用单因素方差分析和Duncan多重比较,*表示P<0.05,** P<0.01 Note: one-way ANOVA and Duncan multiple comparison were used, *Indicates P<0.05, ** P<0.01 表 9 M1和M2养殖区牡蛎氨基酸检测结果对比
Tab. 9 Comparison of amino acid detection results between M1 and M2 oysters
氨基酸种类 M1 M2 异亮氨酸(Ile)☆ 0.36±0.00 0.35±0.01 亮氨酸(Leu)☆ 0.61±0.02 0.57±0.02 酪氨酸(Tyr)++ 0.29±0.02 0.29±0.01 丙氨酸(Ala)++ 0.48±0.02 0.48±0.01 缬氨酸(Val)☆ 0.36±0.01 0.36±0.01 蛋氨酸(Met)☆ 0.19±0.01 0.19±0.01 天门冬氨酸(Asp)++ 0.89±0.01 0.89±0.02 苏氨酸(Thr)☆ 0.39±0.01 0.38±0.01 丝氨酸(Ser) 0.40±0.01 0.38±0.02 谷氨酸(Glu)++ 1.34±0.02 1.30±0.03 脯氨酸(Pro) 0.33±0.03 0.33±0.01 甘氨酸(Gly)++ 0.51±0.01 0.50±0.01 苯丙氨酸(Phe)☆++ 0.30±0.01 0.30±0.01 组氨酸(His) 0.22±0.01 0.23±0.01 赖氨酸(Lys)☆ 0.61±0.01 0.61±0.01 精氨酸(Arg) 0.56±0.01 0.54±0.02 16种氨基酸总量(TAA) 7.79±0.09 7.65±0.17 必需氨基酸(EAA) 3.79±0.01* 3.71±0.04 非必需氨基酸(NEAA) 4.00±0.08 3.92±0.11 呈味氨基酸(DAA) 2.80±0.05 2.75±0.07 EAA/TAA% 48.69±0.40 48.55±0.69 EAA/NEAA% 94.89±1.53 94.88±1.77 DAA/TAA% 35.90±0.24 35.88±0.25 注:采用单因素方差分析和Duncan多重比较,++表示呈味氨基酸,☆表示必需氨基酸;*表示差异显著P<0.05 Note: one-way ANOVA and Duncan multiple comparison were used, ++Indicating taste amino acids, ☆ represents essential amino acids; *Indicating significant difference P<0.05 表 10 M1和M2养殖区牡蛎氨基酸AAS、CS和EAAI
Tab. 10 Amino acids AAS, CS and EAAI of M1 and M2 oysters
评分 必需氨基酸 M1 M2 AAS % 异亮氨酸(Ile) 114.00 114.38 亮氨酸(Leu) 111.02 106.44 缬氨酸(Val) 92.49 92.81 蛋氨酸+半胱氨酸(Met+Cys) 69.00 69.84 苏氨酸(Thr) 125.24 124.18 苯丙氨酸+酪氨酸(Phe+Tyr) 124.17 127.45 赖氨酸(Lys) 141.30 143.79 CS % 异亮氨酸(Ile) 69.09 69.32 亮氨酸(Leu) 88.31 84.67 缬氨酸(Val) 92.49 92.81 蛋氨酸+半胱氨酸(Met+Cys) 43.91 44.44 苏氨酸(Thr) 98.23 97.40 苯丙氨酸+酪氨酸(Phe+Tyr) 74.50 76.47 赖氨酸(Lys) 121.43 123.57 EAAI 80.56 80.70 注:采用单因素方差分析和Duncan多重比较 Note: one-way ANOVA and Duncan multiple comparison were used -
[1] 国家统计局. 中国统计年鉴2024[R]. 北京: 中国统计出版社, 2024.National Bureau of Statistics of China. China statistical yearbook 2024[R]. Beijing: China Statistics Press, 2024. [2] 罗茵, 方琼玟. 太平洋牡蛎与龙须菜互利, 共享美丽南澳海区[J]. 海洋与渔业, 2018(2): 44−46.Luo Yin, Fang Qiongwen. Pacific oysters and sauerkraut benefit from each other, sharing the beautiful South Australian sea area[J]. Ocean and Fishery, 2018(2): 44−46. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [3] 丁刚, 吴海一, 郭萍萍, 等. 我国海上筏式养殖模式的演变与发展趋势[J]. 中国渔业经济, 2013, 31(1): 164−169. doi: 10.3969/j.issn.1009-590X.2013.01.027Ding Gang, Wu Haiyi, Guo Pingping, et al. Evolution and development trend of marine raft cultivation model in China[J]. Chinese Fisheries Economics, 2013, 31(1): 164−169. doi: 10.3969/j.issn.1009-590X.2013.01.027 [4] 郑辉, 李志伟. 贝藻混养生态系统模拟实验研究[J]. 海洋科学, 2014, 38(10): 52−55. doi: 10.11759/hykx20140427001Zheng Hui, Li Zhiwei. Simulation of the polyculture ecosystem of scallop (Argopecten irradias) and kelp (Ulva pertusavar)[J]. Marine Sciences, 2014, 38(10): 52−55. doi: 10.11759/hykx20140427001 [5] 孙伟. 龙须菜和文蛤混养互利机制的模拟研究[D]. 青岛: 中国科学院海洋研究所, 2006.Sun Wei. The mechanism of mutual benefit between the polycultured Meretrix meretrix and Gracilaria lemaneiformis[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2006. [6] 阙华勇, 张国范. 我国贝类产业技术的现状与发展趋势[J]. 海洋科学集刊, 2016(1): 69−76. doi: 10.12036/hykxjk20160725004Que Huayong, Zhang Guofan. Status and trend of molluscan mariculture techniques in China[J]. Studia Marina Sinica, 2016(1): 69−76. doi: 10.12036/hykxjk20160725004 [7] 李杰, 雷驰宙, 陈伟洲. 南澳贝藻混养互利机制的初步研究[J]. 水产科学, 2012, 31(8): 449−453. doi: 10.3969/j.issn.1003-1111.2012.08.001Li Jie, Lei Chizhou, Chen Weizhou. Mutually beneficial mechanism in Nanao polyculture of oyster (Crassostrea gigas) and kelp (Gracilaria lemaneiformis) in Nanao, Guangdong province[J]. Fisheries Science, 2012, 31(8): 449−453. doi: 10.3969/j.issn.1003-1111.2012.08.001 [8] 韦玮, 方建光, 董双林, 等. 贝藻混养互利机制的初步研究[J]. 海洋水产研究, 2002, 23(3): 20−25.Wei Wei, Fang Jianguang, Dong Shuanglin, et al. Preliminary studies on mutually beneficial mechanism in the polyculture of scallop (Chlamys farreri) and kelp (Laminaria japonica)[J]. Marine Fisheries Research, 2002, 23(3): 20−25. [9] 中华人民共和国国家质量监督检验检疫总局. GB 17378-2007, 海洋监测规范[S]. 北京: 中国标准出版社, 2007.Administration of Quality Supervision, Inspection and Quarantine. GB 17378-2007, The specification for marine monitoring[S]. Beijing: Standards Press of China, 2007. [10] 赵文. 水生生物学[M]. 北京: 中国农业出版社, 2005.Zhao Wen. Hydrobiology[M]. Beijing: China Agriculture Press, 2005. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [11] 中国科学院中国孢子植物志编辑委员会. 中国海藻志[M]. 北京: 科学出版社, 2013.The Flora of the People’s Republic of China Board. Flora Algarum Marinarum Sinicarum[M]. Beijing: Science Press, 2013. (查阅网上资料, 未找到对应作者英文翻译信息, 请确认) [12] 福迪 B. 藻类学[M]. 上海: 上海科学技术出版社, 1980: 24.Fott B. Phycology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1980: 24. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [13] 谢立民. 拓林湾细菌、弧菌和异养菌数量的时空分布和细菌生产力研究[D]. 广州: 暨南大学, 2004.Xie Limin. Study of bacterial productivity and the spatial and temporal distribution of bacteria、vibrio and heterotrophic bacteria in Zhelin Bay[D]. Guangzhou: Jinan University, 2004. [14] Shannon C E, Weaver W. The Mathematical Theory of Commeunication[M]. Urbana: The University of Illinois Press, 1964: 125. [15] Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969. [16] Margalef R. Perspectives in Ecological Theory[M]. Chicago: University of Chicago Press, 1968: 1−111. [17] 全为民, 沈新强, 韩金娣, 等. 长江口及邻近水域富营养化现状及变化趋势的评价与分析[J]. 海洋环境科学, 2005, 24(3): 13−16. doi: 10.3969/j.issn.1007-6336.2005.03.004Quan Weimin, Shen Xinqiang, Han Jindi, et al. Analysis and assessment on eutrophication status and developing trend in Changjiang Estuary and adjacent sea[J]. Marine Environmental Science, 2005, 24(3): 13−16. doi: 10.3969/j.issn.1007-6336.2005.03.004 [18] 郭永坚, 罗昭林, 李俊伟, 等. 2012-2013年流沙湾海水养殖区水环境质量评价[J]. 广东农业科学, 2015, 42(19): 130−136. doi: 10.3969/j.issn.1004-874X.2015.19.021Guo Yongjian, Luo Zhaolin, Li Junwei, et al. Assessment of water environmental quality of mariculture areas in Liusha Bay in 2012-2013[J]. Guangdong Agricultural Sciences, 2015, 42(19): 130−136. doi: 10.3969/j.issn.1004-874X.2015.19.021 [19] 朱四喜, 方添坤. 中街山列岛海域增养殖区表层营养盐及富营养化评价[J]. 科学技术与工程, 2014, 14(4): 164−169. doi: 10.3969/j.issn.1671-1815.2014.04.034Zhu Sixi, Fang Tiankun. Nutrients and eutrophication evaluation of waters mariculture zone in Zhongjieshan Archipelago[J]. Science Technology and Engineering, 2014, 14(4): 164−169. doi: 10.3969/j.issn.1671-1815.2014.04.034 [20] 张锗, 任宏伟, 牟亮, 等. 春季青岛鳌山湾沿岸海水水质状况分析与评价[J]. 海洋环境科学, 2021, 40(4): 515−520. doi: 10.12111/j.mes.20200173Zhang Zhe, Ren Hongwei, Mou Liang, et al. Assessment on the water quality of coastal seawater in the Aoshan bay, Qingdao in spring[J]. Marine Environmental Science, 2021, 40(4): 515−520. doi: 10.12111/j.mes.20200173 [21] 中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016, 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China. GB 5009.3-2016, National food safety standard Determination of moisture in foods[S]. Beijing: Standards Press of China, 2017. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [22] 中华人民共和国国家卫生和计划生育委员会. GB 5009.4-2016, 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China. GB 5009.4-2016, National food safety standard Determination of ash in foods[S]. Beijing: Standards Press of China, 2017. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [23] 中华人民共和国国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 9695.31-2008肉制品 总糖含量测定[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration. GB/T 9695.31-2008, Meat products - Determination of total sugars content[S]. Beijing: Standards Press of China, 2008. [24] 中华人民共和国国家卫生和计划生育委员会, 国家食品药物监督管理总局. GB 5009.6-2016, 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration. GB 5009.6-2016, National food safety standard Determination of fat in foods[S]. Beijing: Standards Press of China, 2017. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [25] 中华人民共和国国家卫生和计划生育委员会, 国家食品药物监督管理总局. GB 5009.5-2016, 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration. GB 5009.5-2016, National food safety standard Determination of protein in foods[S]. Beijing: Standards Press of China, 2017. (查阅网上资料, 未找到对应英文翻译信息, 请确认) [26] 中华人民共和国国家卫生和计划生育委员会, 国家食品药物监督管理总局. GB 5009.124-2016, 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2017.National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration. GB 5009.124-2016, Determination of amino acids in food safety national standards[S]. Beijing: Standards Press of China, 2017. [27] FAO/WHO. Energy and Protein Requirements[R]. Rome: FAO, 1973: 52. [28] 王光亚. 食品成分表[M]. 北京: 人民卫生出版社, 1991.Wang Guangya. Food Composition Table[M]. Beijing: The People’s Medical Publishing House, 1991. (查阅网上资料, 未找到本条文献英文信息, 请确认) [29] 张福绥, 马江虎, 何义朝, 等. 胶州湾海湾扇贝肥满度的研究[J]. 海洋与湖沼, 1991, 22(2): 97−103.Zhang Fusui, Ma Jianghu, He Yizhao, et al. A study on the meat condition of the bay scallop in Jiaozhou Bay[J]. Oceanologia et Limnologia Sinica, 1991, 22(2): 97−103. [30] 国家环境保护局. GB 3097-1997, 海水水质标准[S]. 北京: 环境科学出版社, 2004.National Environmental Protection Agency. GB 3097-1997, Sea water quality standards[S]. Beijing: Environmental Science Press, 2004. (查阅网上资料, 不确定修改是否正确, 请确认) [31] 吴世凯, 谢平, 倪乐意, 等. 氮磷比对长江中下游地区浅水湖泊群浮游植物类群的影响(英文)[J]. 集成技术, 2015, 4(6): 15−25. (查阅网上资料, 本条文献为英文文献, 请确认)Wu Shikai, Xie Ping, Ni Leyi, et al. Patterns of phytoplankton taxonomic composition affected by different nitrogen phosphorus ratios in shallow lakes of the Yangtze River Area[J]. Journal of Integration Technology, 2015, 4(6): 15−25. [32] 沈淑芬, 魏婷, 孙琼花, 等. 海带对罗源湾养殖区海水的生物修复研究[J]. 福建师范大学学报(自然科学版), 2013, 29(4): 103−108.Shen Shufen, Wei Ting, Sun Qionghua, et al. Bioremediation of mariculture area by Laminaria japonica in Luoyuan Bay[J]. Journal of Fujian Normal University (Natural Science Edition), 2013, 29(4): 103−108. [33] 林向阳, 钟晨辉, 唐隆晨, 等. 海带对大黄鱼网箱养殖区水质的生物修复[J]. 渔业研究, 2018, 40(4): 279−285.Lin Xiangyang, Zhong Chenhui, Tang Longchen, et al. Bioremediation in Pseudosciaena crocea cage-farming areas by the cultivation of Saccharina japonica[J]. Journal of Fisheries Research, 2018, 40(4): 279−285. [34] Ko G W K, Dineshram R, Campanati C, et al. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the Pacific Oyster[J]. Environmental Science & Technology, 2014, 48(17): 10079−10088. [35] 卢钰博. 牡蛎养殖区生态环境调查及影响单体三倍体牡蛎生长的因素[D]. 烟台: 烟台大学, 2021.Lu Yubo. Investigation of ecological environment in oyster aquaculture areas and the factors affecting the growth of cultchless triploid oysters[D]. Yantai: Yantai University, 2021. [36] Ramajo L, Marbà N, Prado L, et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification[J]. Global Change Biology, 2016, 22(6): 2025−2037. doi: 10.1111/gcb.13179 [37] 范昌福, 裴艳东, 王宏, 等. 渤海湾西岸牡蛎壳体形态、生长速率与生长环境的关系[J]. 海洋通报, 2010, 29(5): 526−533. doi: 10.3969/j.issn.1001-6392.2010.05.009Fan Changfu, Pei Yandong, Wang Hong, et al. Relationship among the form, growth rate and living environment of oyster shells in west coast of Bohai Bay[J]. Marine Science Bulletin, 2010, 29(5): 526−533. doi: 10.3969/j.issn.1001-6392.2010.05.009 [38] 莫日馆, 肖述, 秦艳平, 等. 深凹壳型香港牡蛎家系生长与存活性状比较[J]. 中国水产科学, 2019, 26(5): 869−882.Mo Riguan, Xiao Shu, Qin Yanping, et al. Comparison of growth and survival traits among different deep-cupped shell shape families of Crassostrea hongkongensis[J]. Journal of Fishery Sciences of China, 2019, 26(5): 869−882. [39] 方笑, 张福崇, 吴彦. 三倍体长牡蛎浅海筏式养殖试验[J]. 河北渔业, 2022(8): 12−16.Fang Xiao, Zhang Fusui, Wu Yan. Experimental study on shallow sea raft aquaculture of triploid long oysters[J]. Hebei Fisheries, 2022(8): 12−16. (查阅网上资料, 未找到对应作者英文翻译信息, 请确认) [40] 梅丽敏, 周成旭. 糖原在双壳贝类中的储存、转运和利用研究进展[J]. 水产科学, 2023, 42(1): 167−174.Mei Limin, Zhou Chengxu. A review: research progress on storage, transport and utilization of glycogen in bivalves[J]. Fisheries Science, 2023, 42(1): 167−174. [41] Dridi S, Romdhane M S, Elcafsi M. Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia[J]. Aquaculture, 2007, 263(1/4): 238−248. [42] 倪辉, 王晓林, 姜泽东, 等. 海带生长初期与成体期食品原料学特性[J]. 食品科学, 2022, 43(23): 34−40. doi: 10.7506/spkx1002-6630-20211122-268Ni Hui, Wang Xiaolin, Jiang Zedong, et al. Nutritional, taste and texture characteristics of juvenile and adult kelp[J]. Food Science, 2022, 43(23): 34−40. doi: 10.7506/spkx1002-6630-20211122-268 [43] 宋冬茹, 彭吉星, 卢龙飞, 等. 栉孔扇贝全生长周期营养品质变化与环境因子相关性分析[J]. 水产科学, 2024, 43(3): 341−351.Song Dongru, Peng Jixing, Lu Longfei, et al. Changes in nutrient quality and correlationship between scallop Chlamys farreri and environmental factors in whole culture period[J]. Fisheries Science, 2024, 43(3): 341−351. [44] 李娜. 贝类中氨基酸、脂肪酸和重金属的含量分析及其产品质量评价[D]. 保定: 河北农业大学, 2011.Li Na. The amino acids, fatty acids and heavy metals content analysis of the shellfish and its product quality evaluation[D]. Baoding: Hebei Agricultural University, 2011. -