Calculation of Wave Force and Dynamic Response Analysis of Offshore Platforms based on the radial basis function
-
摘要: 对于细长杆件上的受力,工程上大多是通过Morison方程来计算波浪荷载。由于以往求解波浪力的Morison方程大部分都是简化方程,将桩体假设为刚体,没有考虑到桩体的弹性变形。基于径向基函数这一无网格方法,将考虑了桩体弹性变形的Morison方程和动力平衡方程联立求解,得到单桩在波浪荷载作用下的波浪力和动力响应,并将其与规范方法和以往的文献方法作对比,验证了此方法的准确性。将此方法应用于实际工程案例,可得到最不利工况下工作平台的动力响应。径向基函数计算简便,易于掌握,可将其应用于实际工程中,为以后的海上结构物计算提供了一个新的方向。Abstract: In engineering practice, the Morison equation is commonly used to calculate wave loads on slender structures. Traditionally, the Morison equation for wave force calculation is often simplified, assuming the pile as a rigid body and neglecting the elastic deformation of the pile. By employing the Radial Basis Function (RBF), a mesh-free method, this study simultaneously solves the Morison equation, which considers pile elastic deformation, and the dynamic balance equation. This approach obtains the wave force and dynamic response of a single pile under wave load, and compares the results with those from standard methods and previous literature to validate its accuracy. Applying this method to actual engineering cases reveals the dynamic response of the working platform under the most unfavorable conditions. The RBF method is computationally straightforward and easy to master, making it suitable for practical engineering applications and providing a new direction for the calculation of offshore structures in the future.
-
表 1 单桩参数表
Tab. 1 Parameter Table of pile
参数 E (kPa) G(kPa) A(m2) Ix(m4) Iy(m4) p(kg/m3) kxA (m2) kyA (m2) 钢管桩 2.×108 0.79×108 0.0698 2.19×10-3 2.19×10-3 7.85×103 0.0349 0.0349 表 2 不同波况的波浪力系数
Tab. 2 Wave force coefficients for different wave conditions
H/L B/L=0.128,d/L=0.246 T=1.6,d=0.9,D=0.47 实验值 规范值 线性波 stokes2阶 stokes3阶 0.01 0.08 0.08 0.07 0.07 0.07 0.02 0.15 0.15 0.14 0.14 0.14 0.03 0.23 0.23 0.22 0.22 0.22 0.04 0.31 0.30 0.28 0.28 0.29 0.05 0.38 0.38 0.35 0.36 0.36 0.60 0.45 0.46 0.42 0.43 0.44 0.70 0.51 0.55 0.49 0.51 0.52 0.08 0.56 0.63 0.56 0.58 0.60 H/L B/L=0.191,d/L=0.302 T=1.6,d=1.151,D=0.73 实验值 规范值 线性波 stokes2阶 stokes3阶 0.02 0.06 0.08 0.07 0.07 0.07 0.04 0.19 0.20 0.17 0.18 0.18 0.05 0.24 0.27 0.23 0.23 0.23 0.06 0.32 0.35 0.30 0.30 0.30 0.08 0.39 0.46 0.38 0.39 0.39 表 3 工作平台波浪参数
Tab. 3 Wave parameters of the working platform
工况 1 2 3 4 波高 2.0 2.4 2.5 2.6 周期 17 17.3 17.4 17.7 -
[1] 张力伟, 李昕, 赵颖华. 基于CFD的小尺度桩柱流固耦合分析及波浪力求解[J]. 大连理工大学学报, 2017, 57(6): 615−621.Zhang Liwei, Li Xin, Zhao Yinghua. FSI analysis of small scale pile and solution of wave force using CFD method[J]. Journal of Dalian University of Technology, 2017, 57(6): 615−621. [2] 张学志, 黄维平, 李华军. 考虑流固耦合时的海洋平台结构非线性动力分析[J]. 中国海洋大学学报, 2005, 35(5): 823−826.Zhang Xuezhi, Huang Weiping, Li Huajun. Nonlinear dynamic analysis of offshore platform considering fluid-structure interaction[J]. Periodical of Ocean University of China, 2005, 35(5): 823−826. [3] 钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 14(1): 3−15.Qian Ruojun, Dong Shilin, Yuan Xingfei. Advances in research on fluid-structure interaction theory[J]. Spatial Structures, 2008, 14(1): 3−15. [4] 戴澍, 解德. 基于ABAQUS的小尺度桩柱波浪力计算方法[J]. 固体力学学报, 2011, 32(S1): 288−295.Dai Shu, Xie De. An approach for computation of wave load on small dimension pile foundation based on ABAQUS[J]. Chinese Journal of Solid Mechanics, 2011, 32(S1): 288−295. [5] . 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.Wang Shuqing, Liang Bingchen. Wave Mechanics for Ocean Engineering[M]. Qingdao: China Ocean University Press, 2013. [6] . 谈开孚, 赵永凯, 郭小弟. 谈加加速度[J]. 力学与实践, 1988, 10(5): 46−51.Tan Kaifu, Zhao Yongkai, Guo Xiaodi. Talk about the jerk[J]. Mechanics in Engineering, 1988, 10(5): 46−51. (查阅网上资料, 未找到本条文献的英文信息, 请确认) [7] . 陈文, 傅卓佳, 魏星. 科学与工程计算中的径向基函数方法[M]. 北京: 科学出版社, 2014.Chen Wen, Fu Zhuojia, Wei Xing. Radial Base Function Methods in Science and Engineering Calculation[M]. Beijing: Science Press, 2014. (查阅网上资料, 未找到本条文献的英文信息, 请确认) [8] Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1): 389−396. [9] Wu Zongmin. Compactly supported positive definite radial functions[J]. Advances in Computational Mathematics, 1995, 4(1): 283−292. [10] 李岩汀, 许锡宾, 周世良, 等. 基于径向基函数逼近的非线性动力系统数值求解[J]. 应用数学和力学, 2016, 37(3): 311−318.Li Yanting, Xu Xibin, Zhou Shiliang, et al. A numerical approximation method for nonlinear dynamic systems based on radial basis functions[J]. Applied Mathematics and Mechanics, 2016, 37(3): 311−318. [11] . 李岩汀. 基于径向基函数逼近理论的结构动力响应灵敏度研究[D]. 重庆: 重庆交通大学, 2018.Li Yanting. Study on structural dynamic response sensitivity using the approximation theory of radial basis functions[D]. Chongqing: Chongqing Jiaotong University, 2018. [12] 左其华. 方形墩柱上的非线性波浪荷载[J]. 海洋工程, 1993, 11(1): 50−58.Zuo Qihua. Nonliner wave loads on a square cylinder[J]. The Ocean Engineering, 1993, 11(1): 50−58. [13] . Mogridge G R A J. A design method for estimating wave loads on square caissons[R]. National Research Council of Can, 1976, Rept. No. LTR: 57. (查阅网上资料, 未找到本条文献, 请确认)