留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮颗粒物对胶州湾海域沉积物上覆水体反硝化作用潜力的诱导与影响机制

曾健 陈宝红 石国宗 关燕云 卓泽晟 叶志雄

曾健,陈宝红,石国宗,等. 悬浮颗粒物对胶州湾海域沉积物上覆水体反硝化作用潜力的诱导与影响机制[J]. 海洋学报,2025,47(x):1–10
引用本文: 曾健,陈宝红,石国宗,等. 悬浮颗粒物对胶州湾海域沉积物上覆水体反硝化作用潜力的诱导与影响机制[J]. 海洋学报,2025,47(x):1–10
ZENG Jian,CHEN Bao-hong,SHI Guo-zong, et al. Induction and Effects of Suspended Particles on the Denitrification Potential within Overlying Water of Sediments in Jiaozhou Bay[J]. Haiyang Xuebao,2025, 47(x):1–10
Citation: ZENG Jian,CHEN Bao-hong,SHI Guo-zong, et al. Induction and Effects of Suspended Particles on the Denitrification Potential within Overlying Water of Sediments in Jiaozhou Bay[J]. Haiyang Xuebao,2025, 47(x):1–10

悬浮颗粒物对胶州湾海域沉积物上覆水体反硝化作用潜力的诱导与影响机制

基金项目: 福建省自然科学基金青年创新项目(2022J05071)。
详细信息
    通讯作者:

    曾健(1988—),男,福建省漳州市人,博士,讲师,主要从事边缘海氮元素生物地球化学循环研究。E-mail:zengjian@xmoc.edu.cn

Induction and Effects of Suspended Particles on the Denitrification Potential within Overlying Water of Sediments in Jiaozhou Bay

  • 摘要: 水体中的悬浮颗粒物为微生物附着与活跃的生理代谢提供了重要载体,同时由于与水体之间存在有氧–缺氧界面,使得悬浮颗粒物成为水体反硝化作用的热点微区。本研究选取了胶州湾西北部大沽河口和南部湾口区域的两个研究站位,采集柱状沉积物和上覆水体,通过水体原位环境模拟培养和悬浮颗粒物浓度梯度模拟培养实验,测定反硝化脱氮速率及功能基因narGnirS丰度的变化,以此探讨悬浮颗粒物对海湾沉积物上覆水体反硝化作用潜力的诱导与调控机制。结果表明:培养实验均观测到活跃的反硝化作用发生。在6组悬浮颗粒物浓度情形(分别为50 mg/L、100 mg/L、150 mg/L、200 mg/L、300 mg/L和400 mg/L)模拟实验中,反硝化测定速率和功能基因narGnirS丰度均随着悬浮物浓度的增加而增加,意味着悬浮颗粒物能为诱导并促进胶州湾水体微生物反硝化代谢的发生提供重要载体,并且附着在悬浮颗粒物上的反硝化细菌数量对悬浮颗粒物促进反硝化潜力起着主动作用。此外,对比两个站位发现,河口区模拟实验的反硝化速率显著高于湾口区,但功能基因丰度较湾口区低,通过分析指出该现象与悬浮物的组成及粒径大小密切相关,进一步揭示了悬浮颗粒物对调控海湾水体反硝化潜力的复杂机理。本研究的发现表明,悬浮颗粒物可拓展海湾生态系统反硝化发生的区域空间,释放反硝化代谢潜力,对缓解海湾水质富营养化程度,降低水体富营养化风险具有潜在重要的生态意义。
  • 图  1  研究区域与采样站位

    Fig.  1  Map of study area and sampling stations

    图  2  悬浮颗粒物模拟培养实验采样示意图

    Fig.  2  Schematic diagram of sampling method and simulated SPM gradient incubations

    图  3  未赶气和赶气条件下15N-N2 浓度随培养时间的变化

    Fig.  3  Time series of 15N-N2 productions under no-degassing and degassing conditions

    图  4  悬浮颗粒物模拟培养实验中15N-N2 浓度随时间的变化

    Fig.  4  Time series of 15N-N2 productions under different simulated SPM concentrations

    图  5  反硝化培养速率随悬浮颗粒物浓度的变化

    Fig.  5  Variation of denitrification rates among different simulated SPM concentrations

    图  6  功能基因narGnirS丰度随悬浮颗粒物浓度的变化

    Fig.  6  Variation of narG and nirS genes abundance among different SPM concentrations

    图  7  反硝化速率与功能基因丰度的相关性

    Fig.  7  Correlations between measured denitrification rate and functional genes abundance

    表  2  Real-time PCR实验引物列表

    Tab.  2  Primers used in real-time PCR

    基因正向序列反向序列参考文献
    16S rDNAATGGCTGTCGTCAGCTACGGGCGGTGTGTAC[30]
    nirSTACCACCCSGARCCGCGCGTGCCGCCGTCRTGVAGGAA[31]
    narGTAYGTSGGGCAGGARAAACTGCGTAGAAGAAGCTGGTGCTGT[32]
    下载: 导出CSV

    表  1  采样站位水体和表层沉积物主要观测参数

    Tab.  1  Environmental factors of water columns and surface sediments at the sampling sites

    观测项目 水体 沉积物
    水深
    (m)
    采样深度
    (m)
    温度
    (℃)
    盐度 Chl a
    (μg/L)
    DO
    (mg/L)
    ${\mathrm{NO}}_3^- $
    (μmol/L)
    ${\mathrm{NH}}_4^+ $
    (μmol/L)
    SPM
    (mg/L)
    TOC (%) TOC/TN
    采样站位 E 2.1 1.7 27.3 29.85 4.26 6.05 15.74 6.32 69.16 1.08 3.8
    M 15.7 14.9 26.4 31.47 1.85 6.72 1.86 1.25 67.25 1.27 9.2
    下载: 导出CSV
  • [1] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226. doi: 10.1007/s10533-004-0370-0
    [2] 高群, 余成. 城市化进程对氮循环格局及动态的影响研究进展[J]. 地理科学进展, 2015, 34(6): 726−738. doi: 10.18306/dlkxjz.2015.06.008

    Gao Qun, Yu Cheng. A review of urbanization impact on nitrogen cycle[J]. Progress in Geography, 2015, 34(6): 726−738. doi: 10.18306/dlkxjz.2015.06.008
    [3] Codispoti L A, Brandes J A, Christensen J P, et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?[J]. Scientia Marina, 2001, 65(S2): 85−105. doi: 10.3989/scimar.2001.65s285
    [4] Devol A H. Denitrification, anammox, and N2 production in marine sediments[J]. Annual Review of Marine Science, 2015, 7: 403−423. doi: 10.1146/annurev-marine-010213-135040
    [5] Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6868): 159−162. doi: 10.1038/415159a
    [6] Knowles R. Denitrification[J]. Microbiological Reviews, 1982, 46(1): 43−70. doi: 10.1128/mr.46.1.43-70.1982
    [7] 郭丽芸, 时飞, 杨柳燕. 反硝化菌功能基因及其分子生态学研究进展[J]. 微生物学通报, 2011, 38(4): 583−590.

    Guo Liyun, Shi Fei, Yang Liuyan. Advances in functional genes and molecular ecology in denitrifiers[J]. Microbiology China, 2011, 38(4): 583−590.
    [8] 薛静怡, 宗雅丽, 侯玉, 等. 水产养殖中亚硝酸盐毒性影响及处理的研究进展[J]. 渔业研究, 2017, 39(4): 320−324.

    Xue Jingyi, Zong Yali, Hou Yu, et al. Research progress on toxicity and treatment of nitrite in aquaculture[J]. Journal of Fisheries Research, 2017, 39(4): 320−324.
    [9] Alinsafi A, Adouani N, Béline F, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry, 2008, 43(6): 683−689. doi: 10.1016/j.procbio.2008.02.008
    [10] Liu Ting, Xia Xinghui, Liu Shaoda, et al. Acceleration of denitrification in turbid rivers due to denitrification occurring on suspended sediment in oxic waters[J]. Environmental Science & Technology, 2013, 47(9): 4053−4061.
    [11] Stief P, Kamp A, Thamdrup B, et al. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels[J]. Frontiers in Microbiology, 2016, 7: 98.
    [12] Bianchi D, Weber T S, Kiko R, et al. Global niche of marine anaerobic metabolisms expanded by particle microenvironments[J]. Nature Geoscience, 2018, 11(4): 263−268. doi: 10.1038/s41561-018-0081-0
    [13] Kellogg C T E, Deming J W. Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea[J]. Aquatic Microbial Ecology, 2009, 57(1): 1−18. doi: 10.1007/s00248-008-9465-9
    [14] Wu Wenxue, Xu Zhimeng, Dai Minhan, et al. Homogeneous selection shapes free-living and particle-associated bacterial communities in subtropical coastal waters[J]. Diversity and Distributions, 2021, 27(10): 1904−1917. doi: 10.1111/ddi.13193
    [15] Ploug H. Small-scale oxygen fluxes and remineralization in sinking aggregates[J]. Limnology and Oceanography, 2001, 46(7): 1624−1631. doi: 10.4319/lo.2001.46.7.1624
    [16] Klawonn I, Bonaglia S, Brüchert V, et al. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates[J]. The ISME Journal, 2015, 9(6): 1456−1466. doi: 10.1038/ismej.2014.232
    [17] Yao Xiaolong, Zhang Lu, Zhang Yunlin, et al. Denitrification occurring on suspended sediment in a large, shallow, subtropical lake (Poyang Lake, China)[J]. Environmental Pollution, 2016, 219: 501−511. doi: 10.1016/j.envpol.2016.05.073
    [18] Zhu Weijing, Wang Cheng, Hill J, et al. A missing link in the estuarine nitrogen cycle?: coupled-nitrification-denitrification mediated by suspended particulate matter[J]. Scientific Reports, 2018, 8(1): 2282. doi: 10.1038/s41598-018-20688-4
    [19] Xia Xinghui, Jia Zhimei, Liu Ting, et al. Coupled nitrification-denitrification caused by suspended sediment (SPS) in rivers: importance of SPS size and composition[J]. Environmental Science & Technology, 2017, 51(1): 212−221.
    [20] Zeng Jian, Chen Min, Guo Laodong, et al. Role of organic components in regulating denitrification in the coastal water of Daya Bay, southern China[J]. Environmental Science: Processes & Impacts, 2019, 21(5): 831−844.
    [21] Lewis J. Turbidity-controlled suspended sediment sampling for runoff-event load estimation[J]. Water Resources Research, 1996, 32(7): 2299−2310. doi: 10.1029/96WR00991
    [22] Zeng Jian, Chen Min, Zheng Minfang, et al. Effects of particles on potential denitrification in the coastal waters of the Beibu Gulf in China[J]. Science of the Total Environment, 2018, 624: 1274−1286. doi: 10.1016/j.scitotenv.2017.12.192
    [23] Deng Bing, Zhang Jing, Zhang Guirong, et al. Enhanced anthropogenic heavy metal dispersal from tidal disturbance in the Jiaozhou Bay, North China[J]. Environmental Monitoring and Assessment, 2010, 161(1/4): 349−358.
    [24] 徐菡悦, 王保栋, 辛明, 等. 胶州湾营养盐的长期变化及其生态效应[J]. 海洋科学进展, 2020, 38(2): 276−286. doi: 10.3969/j.issn.1671-6647.2020.02.008

    Xu Hanyue, Wang Baodong, Xin Ming, et al. Long-term changes of nutrients and their ecological effects in the Jiaozhou Bay[J]. Advances in Marine Science, 2020, 38(2): 276−286. doi: 10.3969/j.issn.1671-6647.2020.02.008
    [25] 王艳玲, 安文超, 汪进生, 等. 胶州湾富营养化现状及趋势分析[J]. 海洋湖沼通报, 2023, 45(4): 146−150.

    Wang Y L, An W C, Wang J S, et al. Current status and changing tendency of eutrophication of Jiaozhou Bay[J]. Transactions of Oceanography and Limnology, 2023, 45(4): 146−150.
    [26] Holtappels M, Lavik G, Jensen M M, et al. 15N-labeling experiments to dissect the contributions of heterotrophic denitrification and anammox to nitrogen removal in the OMZ waters of the ocean[J]. Methods in Enzymology, 2011, 486: 223−251.
    [27] 白洁, 田延昭, 孙鹏飞, 等. 纳米银对胶州湾西北部海区及河口区沉积物反硝化能力和功能基因丰度的影响[J]. 环境科学, 2018, 39(11): 4956−4963.

    Bai Jie, Tian Yanzhao, Sun Pengfei, et al. Effect of silver nanoparticles on denitrification and functional gene abundances of sediment in Dagu River Estuary and Northwest of Jiaozhou Bay[J]. Environmental Science, 2018, 39(11): 4956−4963.
    [28] 任朝萌, 白洁, 李辉, 等. 纳米氧化锌和菲对长江口附近海域沉积物反硝化作用及功能菌群落结构的影响[J]. 中国海洋大学学报, 2021, 51(6): 78−87.

    Ren Zhaomeng, Bai Jie, Li Hui, et al. Effects of Zinc Oxide nanoparticles and phenanthrene on denitrification and denitrifying bacteria communities of sediments in the sea area near the Yangtze River Estuary[J]. Periodical of Ocean University of China, 2021, 51(6): 78−87.
    [29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [30] Harms G, Layton A C, Dionisi H M, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant[J]. Environmental Science & Technology, 2003, 37(2): 343−351.
    [31] Lόpez-Gutiérrez J C, Henry S, Hallet S, et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J]. Journal of Microbiological Methods, 2004, 57(3): 399−407. doi: 10.1016/j.mimet.2004.02.009
    [32] Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10): 3769−3775. doi: 10.1128/AEM.64.10.3769-3775.1998
    [33] Han Ping, Li Yunxiao, Yang Xufeng, et al. Effects of aerobic respiration and nitrification on dissolved inorganic nitrogen and carbon dioxide in human-perturbed eastern Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2017, 124(1): 449−458. doi: 10.1016/j.marpolbul.2017.07.055
    [34] Helly J J, Levin L A. Global distribution of naturally occurring marine hypoxia on continental margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(9): 1159−1168. doi: 10.1016/j.dsr.2004.03.009
    [35] Galán A, Faúndez J, Thamdrup B, et al. Temporal dynamics of nitrogen loss in the coastal upwelling ecosystem off central Chile: evidence of autotrophic denitrification through sulfide oxidation[J]. Limnology and Oceanography, 2014, 59(6): 1865−1878. doi: 10.4319/lo.2014.59.6.1865
    [36] Wang Jing, Kan Jinjun, Qian Gang, et al. Denitrification and anammox: understanding nitrogen loss from Yangtze Estuary to the east China sea (ECS)[J]. Environmental Pollution, 2019, 252: 1659−1670. doi: 10.1016/j.envpol.2019.06.025
    [37] Huang Yan, An S. Weak hypoxia enhanced denitrification in a dissimilatory nitrate reduction to ammonium (DNRA)-dominated shallow and eutrophic coastal waterbody, Jinhae Bay, South Korea[J]. Frontiers in Marine Science, 2022, 9: 897474. doi: 10.3389/fmars.2022.897474
    [38] 朱为静. 杭州湾河口悬浮颗粒物介导的硝化—反硝化耦合过程微生物机理研究[D]. 杭州: 浙江大学, 2017.

    Zhu Weijing. Microbial mechanism of coupled nitrification-denitrification mediated by suspended particulate matter in Hangzhou Bay Estuary[D]. Hangzhou: Zhejiang University, 2017.
    [39] Yan Yifeng, Zhou Junbo, Du Chenghao, et al. Relationship between nitrogen dynamics and key microbial nitrogen-cycling genes in an intensive freshwater aquaculture pond[J]. Microorganisms, 2024, 12(2): 266. doi: 10.3390/microorganisms12020266
    [40] 李雯雯, 刘瑞志, 徐慧韬, 等. 大辽河口及其毗邻区域水体反硝化功能基因的定量研究[J]. 环境科学研究, 2021, 34(11): 2625−2635.

    Li Wenwen, Liu Ruizhi, Xu Huitao, et al. Detection of denitrifying bacteria functional genes in Daliao River Estuary and its adjacent areas by real-time quantitative PCR[J]. Research of Environmental Sciences, 2021, 34(11): 2625−2635.
    [41] Wan X S, Sheng Huaxia, Liu Li, et al. Particle-associated denitrification is the primary source of N2O in oxic coastal waters[J]. Nature Communications, 2023, 14(1): 8280. doi: 10.1038/s41467-023-43997-3
    [42] 史明炜, 肖晓彤, 刘珂, 等. 生物标志物梯烷脂指示胶州湾厌氧氨氧化活动[J]. 中国海洋大学学报, 2021, 51(12): 58−71.

    Shi Mingwei, Xiao Xiaotong, Liu Ke, et al. Ladderanes indicate anammox activity in the Jiaozhou Bay[J]. Periodical of Ocean University of China, 2021, 51(12): 58−71.
    [43] 陈祥舰, 刘洪霞, 张德强, 等. 胶州湾海域海水浊度和悬浮物粒径分布及遥感反演模型[J]. 海洋科学, 2023, 47(4): 54−68.

    Chen Xiangjian, Liu Hongxia, Zhang Deqiang, et al. Remote sensing inversion model of seawater turbidity and suspended particle size based on multispectral data[J]. Marine Sciences, 2023, 47(4): 54−68.
    [44] Zhang Xiang, Song Yu, Chen Junjie, et al. Landsat image-based retrieval and analysis of spatiotemporal variation of total suspended solid concentration in Jiaozhou Bay, China[J]. Remote Sensing, 2021, 13(23): 4796. doi: 10.3390/rs13234796
    [45] 王爽, 马安青, 胡娟, 等. 半封闭海湾Chl a浓度遥感反演模型比较性研究——以胶州湾为例[J]. 海洋环境科学, 2019, 38(1): 75−83. doi: 10.12111/j.mes20190112

    Wang Shuang, Ma Anqing, Hu Juan, et al. Comparative study on remote seining inversional model of chlorophyll-a concentration in semi-closed bay —— a case study in the Jiaozhou Bay[J]. Marine Environmental Science, 2019, 38(1): 75−83. doi: 10.12111/j.mes20190112
    [46] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533−616.
    [47] 毕玲玲. 胶州湾悬浮物组成特征及对营养盐的吸附解吸作用研究[D]. 青岛: 中国海洋大学, 2006.

    Bi Lingling. Study on the characteristics of composition of suspended particles and inorganic N、P adsorption to suspended particulate matter in summer in Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2006.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回