Evaluation system establishment of nursery function for three seagrass beds and their spatial differences in the nearshore Bohai Sea
-
摘要: 以渤海区域曹妃甸、黄河口、觉华岛等三个典型海草床为案例区,通过实地调研、物种鉴定及数据收集,获取了海草生长状况、水体和沉积物环境质量、浮游生物、底栖生物、幼鱼种类和生物量等多项第一手资料,从水环境、沉积环境、生物环境等生境角度构建了近海海草床育幼功能综合评估指标体系,并对渤海近海各典型海草床进行了系统评估。结果显示曹妃甸与觉华岛海草生物量分别为371.22 g m−2和340.05 g m−2,均显著高于黄河口海草生物量(161.24 g m−2,p < 0.05);各海草床的浮游植物丰度和生物量平均值均为黄河口>曹妃甸>觉华岛,且空间差异显著(p < 0.05);而各海草床幼/稚鱼密度则是觉华岛最高,黄河口次之,曹妃甸最低,具有显著空间差异(p < 0.05)。对海草床育幼功能综合评估的结果中,觉华岛海草床为良好,略优于曹妃甸海草床(良好状态),优于黄河口海草床(一般状态)。进一步分析典型海草床育幼功能现状的主要驱动因素,结果表明不同海草床中贡献较大的环境与生物指标呈现出空间差异。觉华岛海草床环境和生物状态良好,水体透明度高、溶解氧丰富、无机氮浓度适中,且幼鱼群落的各指标均表现较好,在育幼功能方面贡献显著。相比之下,黄河口海草床的水环境和生物状态相对较差,该区域水体透明度低、pH值和无机氮过高,同时生物指标中浮游植物多样性特征表现差、幼鱼占比偏低,这些因素成为其育幼功能评估结果仅为一般的主要消极因素。曹妃甸海草床的环境状态良好,温度、无机氮和无机磷浓度等因素贡献较大。然而,其生物状态一般,浮游动物和幼鱼数量较低是该区域育幼功能评估的主要消极因素。本研究有助于深刻理解和认识渤海区域典型海草床的育幼功能时空差异和驱动因素,为促进我国海草床生态系统保护与海洋渔业资源可持续发展提供有效的科学依据和数据支撑。Abstract: In this study, we conducted comprehensive field surveys in the Bohai Sea’s seagrass beds at Caofeidian, Yellow River mouth, and Juehua Island, gathering data on seagrass growth, water and sediment quality, plankton, benthic life, and juvenile fish. An integrated assessment index system for the nursery function of nearshore seagrass beds was constructed. The seagrass biomass at Caofeidian and Juehua Island was measured at 371.22 g m−2 and 340.05 g m−2, respectively, both of which were significantly higher than that recorded at the Yellow River mouth (161.24 g m−2, p < 0.05). The average abundance and biomass of phytoplankton in each seagrass bed followed the order: Yellow River mouth > Caofeidian > Juehua Island, exhibiting significant spatial differences (p < 0.05). Regarding juvenile fish density, Juehua Island exhibited the highest density, followed by the Yellow River mouth, with Caofeidian showing the lowest density, also demonstrating significant spatial differences (p < 0.05). The nursery function of seagrass beds was best in Juehua Island seagrass bed, followed by Caofeidian seagrass bed and Yellow River mouth seagrass bed. Environmental and biological indicators with significant contributions varied spatially. The seagrass bed in Juehua Island has a good environmental and biological status, with high water transparency, abundant dissolved oxygen, and moderate inorganic nitrogen concentration, and the juvenile fish community indicators all performed well, contributing significantly to the nursery function. The seagrass bed in Yellow River Delta has relatively poor water environment and biological status, with low water transparency, high pH value, and excessive inorganic nitrogen. The biological indicators showed poor plankton diversity characteristics and low proportion of juvenile fish, which became the main negative factors for its nursery function assessment result of only average. The environmental status in Caofeidian seagrass bed is good, with factors such as temperature, inorganic nitrogen, and inorganic phosphorus concentration contributing significantly. However, its biological status is average, and the low number of planktonic animals and juvenile fish is the main negative factor in the nursery function assessment of this area. This study helps to deeply understand and recognize the spatial and temporal differences and driving factors of the nursery function of typical seagrass beds in the Bohai Sea area, and provides effective scientific basis and data support for the protection of seagrass bed ecosystems and the sustainable development of marine fishery resources in China.
-
Key words:
- seagrass beds /
- nursery function /
- evaluation system /
- spatial differences /
- nearshore Bohai Sea
-
图 3 三个区域海草床海草生物学特征空间差异
误差线上的不同小写字母表示海草生物学特征在不同海草床之间存在显著差异(p < 0.05)
Fig. 3 Spatial differences in biological characteristics of Zostera marina among seagrass beds
Different lowercase letters above error bars indicate significant differences in biological characteristics of Zostera marina among seagrass beds (p < 0.05)
图 4 各海草床典型生物群落丰度/密度的空间差异
误差线上的不同小写字母表示典型生物群落丰度/密度在不同海草床之间存在显著差异(p < 0.05)
Fig. 4 Spatial differences in abundance/density of typical biological communities among seagrass beds
Different lowercase letters above error bars indicate significant differences in abundance/density of typical biological communities among seagrass beds (p < 0.05)
图 5 各海草床典型生物群落生物量的空间差异
误差线上的不同小写字母表示典型生物群落生物量在不同海草床之间存在显著差异(p < 0.05)
Fig. 5 Spatial differences in biomass of typical biological communities among seagrass beds
Different lowercase letters above error bars indicate significant differences in biomass of typical biological communities among seagrass beds (p < 0.05)
图 6 各海草床典型生物群落多样性特征的空间差异
误差线上的不同小写字母表示典型生物群落多样性特征在不同海草床之间存在显著差异(p < 0.05)
Fig. 6 Spatial differences in biodiversity of typical biological communities among seagrass beds
Different lowercase letters above error bars indicate significant differences in biodiversity of typical biological communities among seagrass beds (p < 0.05)
图 9 海草床育幼功能综合指数时空差异
误差线上的不同小写字母表示NFI在不同海草床之间存在显著差异(p < 0.05)
Fig. 9 Spatiotemporal differences in comprehensive nursery function index (NFI) among seagrass beds
Different lowercase letters above error bars indicate significant differences in NFI (Nursery Function Index) among seagrass beds (p < 0.05)
表 1 指标评分标准
Tab. 1 Scoring criteria for evaluation indicators
类型 指标 单位 指标水平(标准化范围) 优(>0.8) 良好(0.6-0.8) 一般(0.4-0.6) 差(0.2-0.4) 极差(0-0.2) 水环境 透明度 cm >=150 100~150 50~100 25~50 <25 溶解氧 mg L−1 >=10 9~10 8~9 7~8 <7 盐度 ppt ≤30 >30 pH 无量纲 7.8~8.5 6.8~7.8 <6.8 水温 ℃ <=20 15~20 25~15 15~25 <15 无机氮 mg L−1 <=0.2 0.2~0.4 0.4~0.8 0.8~1 >1 磷酸盐 μg L−1 <=15 15~30 30~45 45~60 >60 沉积环境 总氮 mg g−1 <=0.3 0.3~0.4 0.4~0.5 0.5~0.6 >0.6 总磷 mg g−1 <=0.2 0.2~0.4 0.4~0.5 0.5~0.6 >0.6 砂含量 % <=75 75~80 80~85 85~90 >90 海草 茎枝密度 ind. m−2 >=300 200~300 100~200 50~100 <50 生物量 shoots m−2 >=500 300~500 200~300 100~200 <100 平均株高 cm >=40 30~40 20~30 10~20 <10 浮游植物 Shannon-Wiener多样性指数 无量纲 >=2 1.5~2 1~1.5 0.5~1 <0.5 Margalef 丰富度 无量纲 >=2 1~2 0.5~1 0.1~0.5 <0.1 Pielou 均匀度 无量纲 >=0.9 0.8~0.9 0.6~0.8 0.5~0.6 <0.5 丰度 103 cells L−1 <= 3000 3000 ~10000 10000 ~30000 30000 ~60000 > 60000 生物量 mg L−1 <=0.5 0.5~1 1~3 3~5 >5 浮游动物 Shannon-Wiener多样性指数 无量纲 >=1.5 1~1.5 0.5~1 0.1~0.5 <0.1 Margalef 丰富度 无量纲 >=2 1~2 0.5~1 0.1~0.5 <0.1 Pielou 均匀度 无量纲 >=0.8 0.7~0.8 0.6~0.7 0.5~0.6 <0.5 丰度 ind. L−1 >=80 40~80 20~40 10~20 <10 生物量 mg L−1 >=1.5 1~1.5 0.5~1 0.25~0.5 <0.25 底栖动物 Shannon-Wiener多样性指数 无量纲 >=1.5 1~1.5 0.5~1 0.1~0.5 <0.1 Margalef 丰富度 无量纲 >=2 1~2 0.5~1 0.1~0.5 <0.1 Pielou 均匀度 无量纲 >=0.8 0.7~0.8 0.6~0.7 0.5~0.6 <0.5 密度 ind. m−2 >=100 300~100 200~300 100~200 <100 生物量 g m−2 >=40 25~40 10~25 5~10 <5 幼鱼 密度 kg km−2 >= 4000 1500 ~4000 500~ 1500 250~500 <250 生物量 ind. km−2 >=20 15~20 10~15 5~10 <5 幼鱼数量占比 % >=0.4 0.3~0.4 0.2~0.3 0.1~0.2 <0.1 表 2 各层指标权重和类型
Tab. 2 Weights and types of hierarchical indicators in the comprehensive evaluation system
准则层 权重 中间层 权重 指标层 权重 环境
指标0.3700 水环境 0.8000 透明度 0.2039 溶解氧 0.1668 盐度 0.0701 pH 0.0487 水温 0.1682 无机碳 0.1727 磷酸盐 0.1727 沉积
环境0.2000 总氮 0.3333 总磷 0.3333 砂含量 0.3333 生物
指标0.6300 海草 0.1667 茎枝密度 0.3333 生物量 0.3333 平均株高 0.3333 浮游
植物0.1667 Shannon-Wiener多样性 0.1429 Margalef 丰富度 0.1429 Pielou 均匀度 0.1429 丰度 0.2857 生物量 0.2857 浮游
动物0.1667 Shannon-Wiener多样性 0.1429 Margalef 丰富度 0.1429 Pielou 均匀度 0.1429 丰度 0.2857 生物量 0.2857 底栖
动物0.1667 Shannon-Wiener多样性 0.1429 Margalef 丰富度 0.1429 Pielou 均匀度 0.1429 密度 0.2857 生物量 0.2857 幼鱼 0.3333 密度 0.3333 生物量 0.3333 幼鱼数量占比 0.3333 表 3 海草床环境因子空间差异
Tab. 3 Spatial differences in environmental factors among seagrass beds
类别 指标名称 单位 觉华岛 黄河口 曹妃甸 水环境 透明度 cm 131.00±10.55a 32.95±0.35b 104.25±14.27a 溶解氧 mg L−1 9.01±0.35b 9.14±0.10a 8.74±0.30b 盐度 ppt 30.82±0.46a 33.10±0.63a 32.93±0.59a pH 无量纲 7.39±0.08c 8.04±0.05b 8.54±0.04a 水温 ℃ 18.07±1.44b 22.71±0.16a 17.89±1.03b 无机氮 mg L−1 0.08±0.01c 1.12±0.02a 0.13±0.00b 磷酸盐 μg L−1 23.74±2.03a 4.60±0.00c 12.13±1.60b 沉积环境 总氮 mg g−1 0.38±0.01b 0.40±0.00b 0.68±0.01a 总磷 mg g−1 0.14±0.00b 0.10±0.00c 0.49±0.00a 砂含量 % 87.19±1.08a 86.60±0.17b 81.88±2.92b 注:表中数据为平均值±标准误;不同字母(a, b, c)表示差异显著(p < 0.05)。Data are presented as mean ± standard error (SE). Different lowercase letters indicate significant differences at p < 0.05 level. -
[1] 刘松林, 江志坚, 吴云超, 等. 海草床育幼功能及其机理[J]. 生态学报, 2015, 35(24): 7931−7940.Liu Songlin, Jiang Zhijian, Wu Yunchao, et al. Nursery function of seagrass beds and its mechanisms[J]. Acta Ecologica Sinica, 2015, 35(24): 7931−7940. [2] 王喜涛, 张沛东, 郭栋. 海草床的产卵场功能及其形成机理研究进展[J]. 水产科学, 2018, 37(4): 571−576.Wang Xitao, Zhang Peidong, Guo Dong. A review: research progress on spawning ground function and formation mechanisms of a seagrass bed[J]. Fisheries Science, 2018, 37(4): 571−576. [3] 周毅, 江志坚, 邱广龙, 等. 中国海草资源分布现状、退化原因与保护对策[J]. 海洋与湖沼, 2023, 54(5): 1248−1257.Zhou Yi, Jiang Zhijian, Qiu Guanglong, et al. Distribution status, degradation reasons and protection countermeasures of seagrass resources in China[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1248−1257. [4] Kaewsrikhaw R, Upanoi T, Prathep A. Ecosystem services and vulnerability assessments of seagrass ecosystems: basic tools for prioritizing conservation management actions using an example from Thailand[J]. Water, 2022, 14(22): 3650. doi: 10.3390/w14223650 [5] Mchenry J, Rassweiler A, Lester S E. Seagrass ecosystem services show complex spatial patterns and associations[J]. Ecosystem Services, 2023, 63: 101543. doi: 10.1016/j.ecoser.2023.101543 [6] Shayka B F, Hesselbarth M H K, Schill S R, et al. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential[J]. Biology Letters, 2023, 19(6): 20230075. doi: 10.1098/rsbl.2023.0075 [7] Bertelli C M, Unsworth R K F. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat[J]. Marine Pollution Bulletin, 2014, 83(2): 425−429. doi: 10.1016/j.marpolbul.2013.08.011 [8] James W R, Furman B T, Rodemann J R, et al. Widespread habitat loss leads to ecosystem-scale decrease in trophic function[J]. Global Change Biology, 2024, 30(4): e17263. doi: 10.1111/gcb.17263 [9] Gullström M, Berkström C, Öhman M C, et al. Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape[J]. Marine Biology, 2011, 158(7): 1483−1495. doi: 10.1007/s00227-011-1665-z [10] Olson A M, Hessing-Lewis M, Haggarty D, et al. Nearshore seascape connectivity enhances seagrass meadow nursery function[J]. Ecological Applications, 2019, 29(5): e01897. doi: 10.1002/eap.1897 [11] Moussa R M, Bertucci F, Jorissen H, et al. Importance of intertidal seagrass beds as nursery area for coral reef fish juveniles (Mayotte, Indian Ocean)[J]. Regional Studies in Marine Science, 2020, 33: 100965. doi: 10.1016/j.rsma.2019.100965 [12] Shoji J, Tomiyama T. Influence of vegetation coverage on dissolved oxygen concentration in seagrass bed in the Seto Inland Sea: possible effects on fish nursery function[J]. Estuaries and Coasts, 2023, 46(4): 1098−1109. doi: 10.1007/s12237-023-01205-x [13] 刘伟妍, 韩秋影, 唐玉琴, 等. 营养盐富集和全球温度升高对海草的影响[J]. 生态学杂志, 2017, 36(4): 1087−1096.Liu Weiyan, Han Qiuying, Tang Yuqin, et al. Review of nutrient enrichment and global warming effects on seagrasses[J]. Chinese Journal of Ecology, 2017, 36(4): 1087−1096. [14] 柳杰, 张沛东, 郭栋, 等. 环境因子对海草生长及光合生理影响的研究进展[J]. 水产科学, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013Liu Jie, Zhang Peidong, Guo Dong, et al. Research advancement in effects of environmental factors on growth and photosynthetic physiology of sea weed[J]. Fisheries Science, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013 [15] 江鑫, 潘金华, 韩厚伟, 等. 底质与水深对大叶藻和丛生大叶藻分布的影响[J]. 大连海洋大学学报, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002Jiang Xin, Pan Jinhua, Han Houwei, et al. Effects of substrate and water depth on distribution of sea weeds Zostera marina and Z. caespitosa[J]. Journal of Dalian Ocean University, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002 [16] Ismail J, Kamal A H M, Idris M H, et al. Zooplankton species composition and diversity in the seagrass habitat of Lawas, Sarawak, Malaysia[J]. Biodiversity Data Journal, 2021, 9: e67449. doi: 10.3897/BDJ.9.e67449 [17] 赖敏, 欧阳玉蓉, 吴耀建, 等. 面向区域层面的海洋生态修复综合效益评估指标体系[J]. 生态学报, 2024, 44(16): 6965−6975.Lai Min, Ouyang Yurong, Wu Yaojian, et al. Indicator system for assessing the comprehensive benefits of marine ecological restoration at the regional level[J]. Acta Ecologica Sinica, 2024, 44(16): 6965−6975. [18] 李建军, 杨笑波, 魏社林, 等. 裸项栉鰕虎鱼的全人工繁殖及其胚胎发育[J]. 中国实验动物学报, 2008, 16(2): 111−116. doi: 10.3969/j.issn.1005-4847.2008.02.008Li Jianjun, Yang Xiaobo, Wei Shelin, et al. Complete artificial propagation and embryonic development of bareneck goby[J]. Acta Laboratorium Animalis Scientia Sinica, 2008, 16(2): 111−116. doi: 10.3969/j.issn.1005-4847.2008.02.008 [19] Li Xiaoxiao, Yang Wei, Li Shanze, et al. Asymmetric responses of spatial variation of different communities to a salinity gradient in coastal wetlands[J]. Marine Environmental Research, 2020, 158: 105008. doi: 10.1016/j.marenvres.2020.105008 [20] Shannon C E, Weaver W. The Mathematical Theory of Communication[M]. Urbana: University of Illinois Press, 1949. [21] Margalef R. Perspectives in Ecological Theory[M]. Chicago: University of Chicago Press, 1968. [22] Pielou E C. An introduction to mathematical ecology[J]. Bioscience, 2011, 24(2): 7−12. (查阅网上资料, 未找到本条文献信息, 请确认) [23] 张翔, 李愫. 2015-2020年黄河口近岸海域生态环境监测与分析[J]. 水土保持通报, 2022, 42(3): 139−147. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203019Zhang Xiang, Li Su. Monitoring and analysis on ecological environment in near-shore waters of Yellow River estuary during 2015-2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 139−147. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203019 [24] 李亚倩, 张倩, 杨世民. 2021年渤海浮游植物群落结构及其季节性变化[J]. 海洋科学进展, 2024, 42(2): 337−348. doi: 10.12362/j.issn.1671-6647.20230326001Li Yaqian, Zhang Qian, Yang Shimin. Phytoplankton community structure and its seasonal variation in the Bohai Sea in 2021[J]. Advances in Marine Science, 2024, 42(2): 337−348. doi: 10.12362/j.issn.1671-6647.20230326001 [25] 栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4): 9−18.Luan Qingshan, Kang Yuande, Wang Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4): 9−18. [26] Liu Songlin, Jiang Zhijian, Zhang Jingping, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Marine Pollution Bulletin, 2016, 110(1): 274−280. doi: 10.1016/j.marpolbul.2016.06.054 [27] 王彬, 董婧, 刘春洋, 等. 夏初辽东湾海蜇放流区大型水母和主要浮游动物[J]. 渔业科学进展, 2010, 31(5): 83−90. doi: 10.3969/j.issn.1000-7075.2010.05.013Wang Bin, Dong Jing, Liu Chunyang, et al. Distribution of giant jellyfish and major zooplankton in jellyfish release area of Liaodong Bay, Bohai Sea in early summer[J]. Progress in Fishery Sciences, 2010, 31(5): 83−90. doi: 10.3969/j.issn.1000-7075.2010.05.013 [28] 李轶平, 刘修泽, 王彬, 等. 辽东湾海域大型底栖动物群落特征[J]. 海洋渔业, 2017, 39(3): 267−276. doi: 10.3969/j.issn.1004-2490.2017.03.004Li Yiping, Liu Xiuze, Wang Bin, et al. Research on the community characteristics of macrobenthos in the Liaodong Bay[J]. Marine Fisheries, 2017, 39(3): 267−276. doi: 10.3969/j.issn.1004-2490.2017.03.004 [29] 张兆衡, 杨薇, 张子玥, 等. 渤海兴城-觉华岛海域海草床典型生物群落特征及其关键环境因子识别[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 90−98.Zhang Zhaoheng, Yang Wei, Zhang Ziyue, et al. Characteristics of typical biological communities and identification of key environmental factors in the seagrass bed of Xingcheng-Juehua Island, Bohai Sea[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 90−98. -